MGA Deletion Leads to Richter’s Transformation by Modulating Mitochondrial OXPHOS

MGA Deletion Promotes Richter’s Transformation by Regulating Mitochondrial Oxidative Phosphorylation This article mainly focuses on the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, known as Richter’s Transformation (RT), exploring the function and molecular mechanism of MGA (MAX Gene Associated). MGA is a functiona...

Neural Landscape is Associated with Functional Outcomes in Irradiated Patients with Oropharyngeal Squamous Cell Carcinoma

Research on the Association between Neural Networks and Functional Outcomes in Radiotherapy Patients with Pharyngeal Cancer 1. Paper Background Introduction The incidence of human papillomavirus (HPV)-mediated oropharyngeal squamous cell carcinoma (OPSCC) has significantly increased over the past 40 years, especially among younger populations with ...

Auto-Segmentation of Neck Nodal Metastases Using Self-Distilled Masked Image Transformer on Longitudinal MR Images

Auto-Segmentation of Neck Nodal Metastases Using Self-Distilled Masked Image Transformer on Longitudinal MR Images

Potential of Self-Distilling Masked Image Transformer in Longitudinal MRI - Automatic Segmentation of Cervical Lymph Node Metastases Report Introduction In tumor radiotherapy, automatic segmentation technology promises to improve speed and reduce inter-reader variability caused by manual segmentation. In radiotherapy clinical practice, accurate and...

Proteomic Stratification of Prognosis and Treatment Options for Small Cell Lung Cancer

Proteomic Subtyping of Small Cell Lung Cancer: Analysis of Prognosis and Treatment Strategies Research Background Small Cell Lung Cancer (SCLC) is a highly malignant and heterogeneous cancer characterized by rapid growth, early metastasis, and drug resistance, which limits treatment options and challenges prognostic prediction models. Current genom...

Acid-Base Homeostasis and its Implications on Cancer Phenotypic Behaviors

Cancer is a major global public health concern, with its complex pathological processes and diverse manifestations being a focus of research. Many studies have shown that acid-base imbalance plays a crucial role in the occurrence and development of cancer, but the underlying mechanisms are not fully understood. In this study titled “Acid–base homeo...

Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis

Comprehensive Characterization and Transcriptome Analysis of Terminal Erythropoiesis in Human Fetal Liver Background and Research Question Erythropoiesis is the process of red blood cell production. Initially, “primitive” erythropoiesis occurs in the yolk sac, gradually replaced by “terminal” erythropoiesis in the fetal liver (FL) and postnatal bon...

Decoding Human Biology and Disease Using Single-Cell Omics Technologies

Decoding Human Biology and Disease with Single-Cell Omics Technologies Background Introduction Cells are the fundamental units of life. A single fertilized egg can develop into an entire complex human body, composed of approximately 37 trillion cells organized into various tissues, organs, and systems. Traditional cell classification methods primar...

Patient Assessment and Therapy Planning Based on Homologous Recombination Repair Deficiency

Application of Homologous Recombination Deficiency (HRD) in Tumor Patient Assessment and Treatment Planning Background Homologous Recombination (HR) is an important mechanism for repairing DNA Double-Strand Breaks (DSBs). However, when key genes in the HR repair pathway are mutated or epigenetically inactivated, cells are unable to effectively repa...

Transketolase Promotes MAFLD by Limiting Inosine-Induced Mitochondrial Activity

Background Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) is a globally prevalent chronic liver disease with an incidence rate of about 25%. Its prevalence is even higher among obese and type 2 diabetic populations. MAFLD is a complex systemic disease that can progress from metabolic-associated fatty liver (MAFL) to metab...

Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule

Role of GLP-1R in T Cells and Its Regulatory Mechanism for Anti-transplant Immunity and Anti-tumor Immunity Academic Background Glucagon-like peptide-1 receptor (GLP-1R) is known as a key regulator of glucose metabolism, primarily expressed in pancreatic β cells. Previous studies have clarified that GLP-1R agonists have significant effects in reduc...