項目に関する知識グラフを用いた推薦のための文脈化されたグラフアテンションネットワーク

知識に基づく推薦システム:コンテクスチュアライズド・グラフ・アテンション・ネットワーク 近年、オンライン情報とコンテンツの爆発的な増加に伴い、推薦システムは電子商取引サイトやソーシャルメディアプラットフォームなどの様々なシーンでますます重要になっています。これらのシステムは通常、ユーザーが興味を持つ可能性のあるアイテムのリストを提供することを目的としています。しかし、従来のユーザー行動データに基づく方法(例えば、協調フィルタリング、深層学習)はデータの希少性やコールドスタート問題に直面しています。これらの問題を解決するために、研究者はユーザーのソーシャルネットワークやレビューのテキストなど、様々な補助情報(side information)を推薦システムに取り入れることを試みています。 研究...

構造強化型原型整列による教師なしクロスドメインノード分類

構造強化の原型アライメントによる教師なしドメイン適応ノード分類 序論 現代情報技術の発展に伴い、グラフニューラルネットワーク(Graph Neural Networks、GNNs)は複雑なネットワークのノード分類タスクにおいて顕著な成功を収めています。しかし、その一つの大きな課題は大量の高品質なラベルデータを必要とすることです。これはグラフ構造データに対して取得コストが高く、時間もかかります。したがって、豊富なラベルがあるグラフ(ソースドメイン)から知識を完全にラベルのないグラフ(ターゲットドメイン)に移す方法が重要な問題となっています。 研究背景と目的 著者のチームは浙江大学計算機科学学院、浙江省サービスロボット重点実験室、およびシンガポール国立大学計算機科学学院から来ています。彼らは構造...

グラフ最適化問題のためのグラフニューラルネットワーク駆動ソルバーフレームワーク

グラフ最適化問題のためのグラフニューラルネットワーク駆動ソルバーフレームワーク

グラフニューラルネットワークに基づくグラフ最適化問題解決フレームワーク 背景と研究動機 制約充足問題(CSPs)および組み合わせ最適化問題(COPs)を解決する際、バックトラック法と分枝ヒューリスティックの組み合わせが一般的です。特定の問題に対して設計された分枝ヒューリスティックは理論上効率的ですが、その複雑さと実装の難しさのために実用化が制限されています。一方で、汎用的な分枝ヒューリスティックは適用範囲が広いものの、通常は最適性能を示しません。本稿の著者は、分枝ヒューリスティックにシャノンエントロピー(Shannon Entropy)を導入することで、汎用性と特定性のバランスを取る新しい解決フレームワークを提案しました。具体的には、グラフニューラルネットワーク(GNN)モデルを使用して、確...

幾何増強事前学習による原子間ポテンシャルへの応用

原子間相互作用力の幾何強化事前トレーニング はじめに 分子動力学(MD)シミュレーションは、物理学、化学、生物学、材料科学などの分野で重要な役割を果たし、原子レベルのプロセスの洞察を提供しています。MDシミュレーションの精度と効率は、分子系の原子間相互作用を記述する原子間ポテンシャル関数に依存しています。古典的MDでは経験式を使用し、パラメータを当てはめる必要がありますが、計算コストは低いものの精度が不十分です。一方、第一原理MDでは、シュレーディンガー方程式を解くことで精密な相互作用を得ることができますが、計算量が非常に大きくなります。そこで、機械学習による原子間ポテンシャル(MLIPs)が、第一原理計算から得られるエネルギーと力をフィッティングすることで、ab initio精度に近づきつ...

オープンワールドイベントへの適応のためのモビリティネットワーク上での時空間ダイナミクスの学習

移動ネットワークの時空動態を学習して開かれた世界のイベントに適応する 研究背景 現代社会のモビリティ・アズ・ア・サービス(MaaS)システムは、公共交通機関、ライドシェアリング、シェアリング自転車などの様々な交通手段が無縫に統合されています。MaaSの効率的な運営を実現するには、マルチモーダル移動ネットワークの時空動態のモデル化が不可欠です。しかし、従来の手法は、異なる交通手段間の相互作用を暗黙的に扱うか、その相互作用が不変であると仮定しています。さらに、休日、悪天候、パンデミックなどの開かれた世界のイベントが発生すると、群集の移動行動がその通常のパターンから大きく逸脱する可能性があり、このモデリングタスクをより難しくしています。 論文の出典 本論文は、イリノイ大学アーバナ・シャンペーン校の...

グラフニューラルネットワークにおける分極メッセージパッシング

グラフニューラルネットワークにおける分極メッセージパッシング

グラフ構造データが様々な分野で広く応用されるにつれ、グラフデータを分析するための強力なツールであるグラフニューラルネットワーク(GNN)が注目されています。しかし、既存のGNNは、ノード表現を学習する際に、主に近傍ノードの類似性情報に依存しており、ノード間の差異性の潜在的可能性を無視しています。最近、新しい「極性メッセージ伝搬」(Polarized message-passing、PMP)パラダイムが登場し、GNNの設計に全く新しいアイデアを注入しました。 研究背景:従来のGNNは、ターゲットノードの表現を学習するために、近傍ノードの特徴を集約していますが、ノード間の類似性のみを考慮し、ノード差異に含まれる豊富な情報を十分に利用していませんでした。実際、現実世界のグラフデータには、「友人のパ...