DeepSleepNet: 生の単一チャネルEEGに基づく自動睡眠段階スコアリングモデル

深度睡眠ネットワーク:シングルチャネルEEGに基づく自動睡眠ステージスコアリングモデル 背景紹介 睡眠は人体の健康に重要な影響を持ち、人々の睡眠の質を監視することは医学研究および実践において極めて重要です。通常、睡眠専門家は複数の生理信号(脳波図 (EEG)、眼電図 (EOG)、筋電図 (EMG)、心電図 (ECG) など)を分析することで睡眠ステージをスコアリングします。これらの信号は多導睡眠ポリグラフ (Polysomnogram, PSG) と呼ばれ、分類後に個人の睡眠状態を特定するために使用されます。しかし、この手動方法は時間がかかり、労力が必要であり、専門家が複数の夜に渡って複数のセンサーを記録し分析する必要があります。 複数の信号(EEG、EOG、EMG など)やシングルチャネル...

シングルチャネルEEGを用いた睡眠段階分類のための注意に基づく深層学習アプローチ

电子電気工程師学会 (IEEE)《神経系统与康复工程事务》2021年第29卷刊登了一篇题为《一种基于注意力深度学习的单通道EEG睡眠阶段分类方法》的文章。本文由Emadeldeen Edele、Zhenghua Chen、Chengyu Liu、Min Wu、Chee-Keong Kwoh、Xiaoli Li及Cuntai Guan等学者撰写。文章的主要目的是提出一种新型的基于注意力的深度学习模型,用于通过单通道的脑电图(EEG)信号进行自动睡眠阶段分类。 研究背景 睡眠是人类重要的生理过程,直接影响到每日生活的各个方面。有研究表明,高质量的睡眠能够促进身体健康和脑功能的提升,而睡眠中断则可能导致失眠或睡眠呼吸暂停等睡眠障碍。睡眠阶段(如浅睡和深睡)对免疫系统、记忆和代谢等起着关键作用,因此...