EPDTNet + -EM:医療画像診断のための高度な転移学習とサブネットアーキテクチャ

学術的背景 現代の医療環境において、医学画像は疾患の診断、治療計画、健康管理において極めて重要な役割を果たしています。しかし、従来の医学画像分析手法には、過学習(overfitting)、計算コストの高さ、汎化能力の限界、ノイズ、サイズや形状の変化など、多くの課題があります。これらの課題により、医学画像の分類と検出精度が制限され、臨床意思決定の正確性と効率性に影響を与えています。 これらの課題に対処するため、研究者たちは機械学習と深層学習に基づく様々な医学画像分析手法を提案してきました。しかし、これらの手法は複雑なデータセットを扱う際に依然として限界があり、特に計算効率と分類精度の面で課題が残っています。そこで、本論文ではEPDTNet+-EM(Efficient Parallel Deep...

高次運動フローによる共役視覚表現の継続的学習

高次運動フローを利用した共役視覚表現の継続的学習:CMOSFETモデルの研究 学術的背景 人工知能とコンピュータビジョンの分野において、連続的な視覚データストリームからの継続的学習(Continual Learning)は長年の課題です。従来の機械学習手法は、独立同分布(i.i.d.)の仮定に依存しており、すべての訓練データが訓練時に静的かつ利用可能であることを前提としています。しかし、現実世界の視覚データは連続的で非独立同分布であることが多く、モデルの訓練に大きな困難をもたらします。さらに、既存の教師なし学習手法の多くは大規模なオフライン訓練データセットに依存しており、これは人間や動物が環境を連続的に体験しながら学習する方法とは大きく異なります。 これらの問題を解決するため、Simone ...

選択的周波数相互作用ネットワークによる航空物体検出の強化

無人機物体検出の向上を目指した選択的周波数領域相互ネットワーク 研究の背景と課題の提起 コンピュータビジョン技術の発展に伴い、無人機による物体検出はリモートセンシング分野における重要な研究テーマの1つになっています。無人機物体検出は、傾斜撮影や異なる高度で撮影された航空画像から、車両や建物などの物体を識別することを目的としています。この技術は、環境モニタリング、災害管理、安全監視などの分野で広く応用されています。しかしながら、物体のスケールや向き、複雑な背景に基づく課題により、無人機物体検出は以下のような多くの困難に直面しています: 物体の密集した分布 光条件に伴う変化 視点の変化 現在の多くの畳み込みニューラルネットワーク(Convolutional Neural Network, CNN...

DeepSleepNet: 生の単一チャネルEEGに基づく自動睡眠段階スコアリングモデル

深度睡眠ネットワーク:シングルチャネルEEGに基づく自動睡眠ステージスコアリングモデル 背景紹介 睡眠は人体の健康に重要な影響を持ち、人々の睡眠の質を監視することは医学研究および実践において極めて重要です。通常、睡眠専門家は複数の生理信号(脳波図 (EEG)、眼電図 (EOG)、筋電図 (EMG)、心電図 (ECG) など)を分析することで睡眠ステージをスコアリングします。これらの信号は多導睡眠ポリグラフ (Polysomnogram, PSG) と呼ばれ、分類後に個人の睡眠状態を特定するために使用されます。しかし、この手動方法は時間がかかり、労力が必要であり、専門家が複数の夜に渡って複数のセンサーを記録し分析する必要があります。 複数の信号(EEG、EOG、EMG など)やシングルチャネル...

シングルチャネルEEGを用いた睡眠段階分類のための注意に基づく深層学習アプローチ

电子電気工程師学会 (IEEE)《神経系统与康复工程事务》2021年第29卷刊登了一篇题为《一种基于注意力深度学习的单通道EEG睡眠阶段分类方法》的文章。本文由Emadeldeen Edele、Zhenghua Chen、Chengyu Liu、Min Wu、Chee-Keong Kwoh、Xiaoli Li及Cuntai Guan等学者撰写。文章的主要目的是提出一种新型的基于注意力的深度学习模型,用于通过单通道的脑电图(EEG)信号进行自动睡眠阶段分类。 研究背景 睡眠是人类重要的生理过程,直接影响到每日生活的各个方面。有研究表明,高质量的睡眠能够促进身体健康和脑功能的提升,而睡眠中断则可能导致失眠或睡眠呼吸暂停等睡眠障碍。睡眠阶段(如浅睡和深睡)对免疫系统、记忆和代谢等起着关键作用,因此...