AIに基づく頭部衝撃運動測定のノイズ除去と外傷性脳損傷予測のための畳み込みニューラルネットワーク

畳み込みニューラルネットワークに基づく頭部衝撃動力学測定のノイズ除去の研究と応用 研究背景 軽度外傷性脳損傷(MTBI)は、世界的な健康の脅威である。人間は転倒、交通事故、スポーツなどの状況でMTBIのリスクにさらされることが多い。統計によると、2016年には世界で2700万件以上の脳損傷の事例があり、そのうち80%は「軽度」の脳損傷で、症状は比較的軽いが長期的な病理変化を引き起こす可能性がある。MTBIの病状分類は通常、グラスゴー昏睡尺度(GCS)によって行われ、そのスコアが12以上の患者は軽度脳損傷に分類される。急性期後には症状が迅速に回復することが多いが、長期的には慢性外傷性脳症(CTE)などの合併症が生じる可能性がある。 頭部衝撃が脳に与える影響を定量化するために、研究者は頭部運動学...

モデルベース診断における重要な観察

このレポートでは、モデルベースの故障診断において、システムの異常の原因となる重要な観測データを特定する枠組みとアルゴリズムが紹介されています。この枠組みでは、元の観測データを「部分観測」に抽象化することで、診断結果に不可欠な観測を特定します。「重要な部分観測」とは、最大限に抽象化した後でも、元の観測と同じ最小診断集合を導出できる最小のものと定義されています。 この研究は、オーストラリア科学産業研究機構のデータ61センターのCody James Christopherと、フランス原子力・代替エネルギー庁のAlban Grastienの2人の著者によって行われ、2024年の人工知能ジャーナルに掲載されました。 研究者たちは最初に、モデルベース診断の基本的な枠組みと概念を説明しています。この枠組み...