ラマンベースの機械学習プラットフォームがIDHmutとIDHwtのグリオーマ間のユニークな代謝差異を明らかにする

ラマン分光法と機械学習プラットフォームに基づくIDH変異型と野生型膠芽腫細胞の代謝差異研究 背景紹介 膠芽腫の診断と治療において、フォルマリン固定、パラフィン包埋(FFPE)組織切片が広く使用されています。しかし、包埋媒体の背景ノイズの影響を受け、FFPE組織はラマン分光法に基づく研究に限られた応用しかされていません。この問題を克服し、腫瘍サブタイプを識別するために、我々の研究チームは新しいラマン分光法に基づく機械学習プラットフォーム「APOLLO (悪性膠芽腫のラマン分光法病理学)」を開発しました。これはFFPE組織切片から膠芽腫のサブタイプを予測できるプラットフォームです。 論文の出典 本論文は、Adrian Lita、Joel Sjöberg、David Păcioianuらの学者によ...