基于图神经网络的图优化问题求解框架

基于图神经网络的图优化问题求解框架

基于图神经网络的图优化问题求解框架 背景及研究动机 在解决约束满足问题(CSPs)和组合优化问题(COPs)时,回溯法与分支启发式结合是一种常见的方法。尽管为特定问题设计的分支启发式理论上是高效的,但其复杂性和实施难度使实践应用受限。反之,通用的分支启发式尽管适用范围广,但通常表现出次优性能。本文作者提出了一个新的求解框架,通过在分支启发式中引入香农熵(Shannon Entropy),在通用性和特定性之间找到平衡。具体地,利用图神经网络(GNN)模型从概率方法中训练得出的损失函数学习这些概率分布,并将其应用于两个NP-hard问题:最小支配团问题(Minimum Dominating Clique Problem)和边团覆盖问题(Edge Clique Cover Problem)。 作者...

针对原子间作用力的几何增强预训练

针对原子间作用力的几何增强预训练 引言 分子动力学(MD)模拟在物理、化学、生物和材料科学等领域扮演着重要角色,为原子水平的过程提供了洞见。MD模拟的精确度和效率取决于所选择描述分子体系中原子相互作用的相互原子作用力(interatomic potentials)函数。经典MD使用经验公式,参数需要拟合,计算代价低但精度不够。而第一性原理MD则通过求解薛定谔方程获得精确的相互作用力,但计算量极大。因此,机器学习相互原子作用力(MLIPs)通过使用机器学习模型拟合第一性原理计算的能量和力而达到接近ab initio的精度以及较高效率,成为一种有前景的替代方案。 MLIPs的性能和通用性受限于标记数据的稀缺性,因为获取标记数据需要耗费巨大的第一性原理计算代价。各种自监督学习方法已被探索过,以从大...

基于移动网络学习时空动态以适应开放世界事件

基于移动网络学习时空动态以适应开放世界事件 研究背景 现代社会的出行服务(Mobility-as-a-Service,MaaS)体系由多种交通方式(如公共交通、网约车、共享单车等)无缝集成而成。为实现MaaS平稚运营,对多模态移动网络的时空动态建模是必不可少的。然而,现有方法要么隐式地处理不同交通方式之间的相互作用,要么假设这种交互作用是不变的。更有甚者,当发生开放世界事件(如节假日、恶劣天气、疫情等)时,人群的集体移动行为将发生显著偏离常态的情况,这使得该建模任务更加具有挑战性。 论文来源 本文由伊利诺伊大学厄巴纳 - 香槟分校地理与地理信息科学系的Zhaonan Wang、东京大学空间信息科学中心的Renhe Jiang、Xuan Song、Ryosuke Shibasaki,以及新南威...

图神经网络中的极化消息传递

图神经网络中的极化消息传递

随着图结构数据在诸多领域的广泛应用,图神经网络(GNN)作为分析图数据的有力工具备受关注。然而,现有GNN在学习节点表示时,主要依赖于邻居节点的相似性信息,忽视了节点间差异性的潜力。近期,一项新颖的”极化消息传递”(Polarized message-passing, PMP)范式应运而生,为GNN设计注入了全新理念。 研究背景:传统GNN通过聚合邻居节点的特征来学习目标节点的表示,但仅考虑了节点间的相似性,未能充分利用节点差异性所蕴含的丰富信息。实际上,现实世界的图数据中普遍存在”友谊悖论”、”影响不平衡”等现象,反映出图中节点的独特性质。有鉴于此,本研究提出PMP范式,旨在同时捕获节点间相似性和差异性的双重信息,借此提升GNN的表示学习能力。 研究机构:本项研究由来自新加坡科技研究局、香...