深度学习脓毒症预测模型对护理质量和患者生存情况的影响

深度学习败血症预测模型对护理质量和患者生存情况的影响 研究背景 败血症是一种感染引起的全身性炎症反应,全球每年大约有4800万人受到影响,其中约1100万人因此死亡。由于败血症的异质性,早期识别通常面临巨大挑战。早期干预包括液体复苏、抗生素管理和感染源控制等治疗措施在疾病早期阶段的效果显著。因此,通过预测分析提升败血症的早期检测具有重要意义。 研究来源 该研究由Aaron Boussina、Supreeth P. Shashikumar、Atul Malhotra、Robert L. Owens、Robert El-Kareh、Christopher A. Longhurst、Kimberly Quintero、Allison Donahue、Theodore C. Chan、Shamim ...