基于微状态和递归量化分析的GRU-CNN模型在听觉注意力检测中的应用

综述与报道:基于微状态和递归量化分析的GRU-CNN模型在听觉注意力检测中的应用 背景与研究动机 注意力作为一种认知能力,对感知过程起着至关重要的作用,帮助人类在纷繁复杂的环境中集中注意力于特定对象,而忽略其他干扰。本论文针对听觉注意力检测(Auditory Attention Detection,AAD)进行了研究,通过多通道脑电图(EEG)信号在听者专注于目标讲话者的过程中提取不同的动态特征,以期在存在竞争性讲话者的情况下有效检测听觉注意力。 论文来源与作者信息 此论文由Mohammadreza Eskandarinasab、Zahra Raeisi、Reza Ahmadi Lashaki和Hamidreza Najafi撰写,分别来自于犹他州立大学、费尔莱狄克森大学、德黑兰科技大学等机...

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者

利用电子健康记录特征识别未诊断的常见变异型免疫缺陷症患者 Johnson等人最近在 Science Translational Medicine 发表了一篇题为《Electronic health record signatures identify undiagnosed patients with common variable immunodeficiency disease》的研究论文。该研究通过电子健康记录(EHRs)和机器学习算法PheneT,识别未被诊断的普通变量免疫缺陷病(common variable immunodeficiency,CVID)的患者,为更早的诊断和治疗提供新途径。 研究背景和研究目的 人类先天性免疫缺陷(inborn errors of immunity...