具有注意力机制的时间依赖学习卷积神经网络在运动想象脑电解码中的应用

MI-EEG解码中基于注意力机制的时间依赖学习卷积神经网络(CNN) 研究背景与问题描述 脑机接口(Brain-Computer Interface, BCI)系统提供了一种通过实时翻译大脑信号与计算机进行通信的新途径。近年来,BCI技术逐渐在为瘫痪患者提供辅助和预防性护理方面发挥了重要作用。现有的许多BCI系统依赖于非侵入性且相对便捷的脑电图(EEG)信号记录来追踪大脑活动。然而,即使在同一MI任务期间,不同时期产生不同MI相关模式的时间依赖性特性也往往被忽略,从而大大限制了MI-EEG解码性能。 论文来源与作者信息 论文《A Temporal Dependency Learning CNN with Attention Mechanism for MI-EEG Decoding》于202...

基于Transformer的深度学习网络与时空信息结合的原始EEG分类方法

研究背景及目的 近年来,脑机接口(Brain-Computer Interface,BCI)系统在神经工程和神经科学领域广泛应用,而脑电图(Electroencephalogram,EEG)作为反映中枢神经系统不同神经元群体活动的数据工具,已经成为这些领域中核心的研究内容。然而,EEG信号具有低空间分辨率、高时间分辨率、低信噪比以及个体差异大等特征,这些都为信号处理和准确分类带来了极大的挑战。尤其在运动想象(Motor Imagery,MI)这一EEG-BCI系统常用范式中,准确分类不同MI任务的EEG信号对于BCI系统的功能恢复和康复具有重要意义。 传统的MI-EEG分类方法通常基于手工特征提取和分类,但这些方法可能在特征提取阶段丢失EEG的有用信息。近年来,深度学习模型因其自动特征提取和...

FP-Age:利用人脸解析注意机制进行野生环境中的面部年龄估计

FP-Age:利用人脸解析注意机制进行野生环境中的面部年龄估计

FP-Age:利用人脸解析注意机制进行野生环境中的面部年龄估计 研究背景 在人脸图像上进行年龄估计是一项重要的计算机视觉任务,它在法医、安全、健康福祉和社交媒体等多种实际应用中具备广泛的应用前景。然而,由于头部姿势、面部表情和遮挡等多样化因素的存在,深度学习模型在人脸年龄估计领域的表现尚有提升空间。特别是在非受控环境下(“in-the-wild”)的人脸图像中,这些问题尤为突出。为了提高模型在不同条件下的鲁棒性和准确性,作者提出了一种新的方法,旨在将面部语义信息引入到年龄估计过程中,使模型能够有效关注最具信息量的面部区域。 研究人员与发表信息 这篇论文的主要作者包括Imperial College London的Yiming Lin、Jie Shen (通讯作者)、Yujiang Wang和...