解剖病理学中的自动化组织分析策略:基准标记集成与多表面组织比较

自动化策略在解剖病理学组织分析中的应用:基准标记整合与多表面组织比较 背景介绍 在解剖病理学实验室中,许多流程仍依赖于手动操作,尤其是在石蜡包埋组织块(Paraffin-Embedded Tissue Blocks, PETBs)的制备和处理过程中。手动操作不仅可能导致样本处理不一致,还可能引发样本错误识别或丢失,进而影响诊断的准确性和效率。为了应对这一问题,自动化技术被引入以提升实验室的效率、减少人为错误,并确保样本处理的一致性。 然而,现有的自动化解决方案仍面临诸多挑战,尤其是在组织样本的追踪和特定区域的识别方面。例如,在处理过程中,石蜡包埋组织块中的特定区域可能需要在后续实验室分析中进一步研究(如肿瘤治疗中的分子分型),但缺乏可靠的参考点使得这一过程复杂且容易出错。因此,研究团队提出了...

DeepSleepNet: 基于原始单通道EEG的自动睡眠分期模型

深度睡眠网络:基于单通道EEG的自动睡眠阶段评分模型 背景介绍 睡眠对于人体健康具有重要影响,监测人们的睡眠质量在医学研究和实践中至关重要。通常,睡眠专家通过分析多种生理信号(如脑电图 (EEG)、眼动电图 (EOG)、肌电图 (EMG) 和心电图 (ECG))进行睡眠阶段评分。这些信号被称为多导睡眠图 (Polysomnogram, PSG),经分类后用于确定个体的睡眠状态。然而,这种手动方法耗时且费力,需要专家持续数夜对多个传感器进行记录并分析。 基于多信号(如EEG、EOG和EMG)或单信号EEG的自动睡眠阶段评分方法已得到广泛研究。然而,大多数现有方法依赖于手工特征提取,这通常根据数据集的特性进行设计,无法推广到具有异质性的更大人群中。此外,较少方法考虑了用于识别睡眠阶段转换规则的时...