EpicPred——基于注意力机制的多实例学习预测表位驱动的T细胞受体表型
T细胞受体(TCR)在适应性免疫系统中起着至关重要的作用,它们通过与特定抗原表位(epitope)结合来识别病原体。理解TCR与表位之间的相互作用对于揭示免疫反应的生物学机制以及开发T细胞介导的免疫疗法具有重要意义。然而,尽管TCR的CDR3区域在表位识别中的重要性已被广泛认可,但如何准确预测与特定疾病或表型相关的TCR-表位相互作用仍是一个挑战。为此,研究人员开发了EpicPred,一种基于注意力机制的多实例学习(Multiple Instance Learning, MIL)模型,旨在预测与癌症或COVID-19患者严重程度相关的TCR-表位相互作用。 论文来源 该论文由Jaemin Jeon、Suwan Yu、Sangam Lee、Sang Cheol Kim、Hye-Yeong Jo...