基于矩阵补全的集成学习提高微生物-疾病关联预测

学术背景与研究问题 微生物作为地球上最广泛存在的生命形式之一,与海洋、土壤以及人类自身均有密切关系。人体内约含有350万亿个微生物细胞(microbial cells),与人类健康、疾病的发生和发展息息相关。近年来,随着测序技术与生物信息学的快速进步,大量研究聚焦于阐明人体微生态(microbiome)组成及其功能对健康产生的影响。例如,肠道菌群组成的变化能够影响机体免疫和疾病发生,肝脏代谢也被证实受肠道微生物调控,会通过降低能量消耗、促进脂肪沉积等促进代谢疾病发展。 尽管实验生物医学对微生物-疾病(microbe-disease)关联的揭示已做出巨大努力,但已被实验确定的疾病相关微生物数量仍十分有限,传统实验方法既耗时又高成本,因此亟需高效、精准的计算方法,用于筛查潜在的微生物-疾病关联。...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...