颈部转移性淋巴结的自动分割方法:基于纵向MRI的自蒸馏掩码图像transformer

颈部转移性淋巴结的自动分割方法:基于纵向MRI的自蒸馏掩码图像transformer

自蒸馏的掩码图像transformer在纵向MRI中的潜力——自动分割颈部淋巴结转移 报告介绍 在肿瘤放疗中,自动分割技术承诺提升速度并降低手工分割带来的读者间差异。在放射肿瘤学临床实践中,精确快速的肿瘤分割对于患者的个性化治疗至关重要。Ramesh Paudyal等来自Memorial Sloan Kettering Cancer Center的研究人员开展了这一项研究,旨在实现并评估“屏蔽图像变压器”(masked image modeling using vision transformers,即SMIT)算法在口咽部鳞状细胞癌患者的纵向T2加权MRI图像中的颈部淋巴结转移的自动分割精度。 这篇论文发表在《BJR|Artificial Intelligence》2024年第1期。这项研...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...