自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究
基于自注意力相似性引导的图卷积网络用于多类型低级别胶质瘤分类 一、研究背景 低级别胶质瘤是一种常见的恶性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起。胶质瘤具有发病率高、复发率高、死亡率高和治愈率低等特点。正确分类多类型低级别胶质瘤对患者的预后至关重要。在诊断上,医生通常利用磁共振成像(MRI)和计算机断层扫描(CT)分析胶质瘤细胞的异柠檬酸脱氢酶(IDH)突变状态。 IDH突变状态是区分野生型和突变型胶质瘤的重要标志。传统上需要通过活检或手术切除来进行免疫组织化学或基因测序,从而确定IDH突变状态。由于活检存在一定风险,因此开发无创预测IDH突变状态的计算机辅助诊断方法具有重要意义,可避免患者接受不必要的手术风险。 二、论文来源 该论文发表于IEEE生物医学与健康信息学期刊(IEEE Jour...