自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

自注意相似性引导的图卷积网络用于多类型低级别胶质瘤分类研究

基于自注意力相似性引导的图卷积网络用于多类型低级别胶质瘤分类 一、研究背景 低级别胶质瘤是一种常见的恶性脑肿瘤,由大脑和脊髓中的胶质细胞癌变引起。胶质瘤具有发病率高、复发率高、死亡率高和治愈率低等特点。正确分类多类型低级别胶质瘤对患者的预后至关重要。在诊断上,医生通常利用磁共振成像(MRI)和计算机断层扫描(CT)分析胶质瘤细胞的异柠檬酸脱氢酶(IDH)突变状态。 IDH突变状态是区分野生型和突变型胶质瘤的重要标志。传统上需要通过活检或手术切除来进行免疫组织化学或基因测序,从而确定IDH突变状态。由于活检存在一定风险,因此开发无创预测IDH突变状态的计算机辅助诊断方法具有重要意义,可避免患者接受不必要的手术风险。 二、论文来源 该论文发表于IEEE生物医学与健康信息学期刊(IEEE Jour...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...