冠心病患者脑功能网络变化:独立成分分析与图论分析

冠心病患者脑功能网络变化:独立成分分析与图论分析

冠心病患者功能性大脑网络变化:独立成分分析和图论分析 本文发表在《Brain Structure and Function》期刊2024年第229卷,探讨了冠心病(coronary heart disease, CHD)患者在功能性连接(functional connectivity, FC)和大脑网络拓扑性质方面的变化。文章由来自厦门大学附属心血管病医院、厦门大学医学院等多所机构的科学家们合作完成,主要作者包括Simin Lin、Puyeh Wu、Shaoyin Duan等。 研究背景与动机 冠心病是全球主要的死亡原因之一,其患者面临认知和心理损害风险增高。此前的研究已经表明,冠心病的发病机制与炎症因素密切相关(Li et al. 2017)。冠心病不仅仅是心血管系统的疾病,还与一系列危险...

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症

基于图的条件生成对抗网络用于生成合成功能性脑网络诊断重度抑郁症 研究背景: 重度抑郁症(Major Depressive Disorder, MDD)是一种广泛存在的精神障碍,影响数百万人的生活,并且对全球健康构成重大威胁。研究表明,通过静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)提取的功能连接性(functional connectivity, FC)能够揭示与MDD相关的功能连接模式,在精准诊断中起到重要作用。然而,由于相关数据的有限性,为稳健的MDD诊断带来挑战。为应对这一挑战,近年来一些研究尝试使用深度神经网络(Deep Neural Networks, DNN)架构来构建生成对抗网络...