基于Transformer模型的DNA序列比对方法研究
学术背景 DNA序列比对是基因组学中的一项核心任务,旨在将短DNA片段(reads)定位到参考基因组上的最可能位置。传统方法通常分为两个步骤:首先对基因组进行索引,然后通过高效搜索定位reads的可能位置。然而,随着基因组数据的爆炸式增长,尤其是面对长达数十亿碱基的参考基因组时,传统的比对方法在计算效率和准确性上面临巨大挑战。近年来,Transformer模型在自然语言处理(NLP)领域的成功启发了研究人员将其应用于DNA序列分析。尽管已有研究表明Transformer模型在短DNA序列分类任务中表现优异,但序列比对任务需要在整个基因组范围内进行搜索,这对模型的全局搜索能力提出了更高要求。 为此,本研究提出了一种名为“embed-search-align”(ESA)的新框架,旨在通过Tran...