Régularisation polyvalente guidée par les relations pour l'apprentissage semi-supervisé fédéré

Contexte académique et problématique Avec les préoccupations croissantes concernant la confidentialité des données, l’apprentissage fédéré (Federated Learning, FL) est devenu un sujet de recherche important. Le FL permet à plusieurs clients de collaborer pour entraîner un modèle global sans partager leurs données, protégeant ainsi la confidentialit...

Apprentissage Fédéré Semi-Supervisé Model-Hétérogène pour la Segmentation d'Images Médicales

Apprentissage Fédéré Semi-Supervisé Model-Hétérogène pour la Segmentation d'Images Médicales

Modèle Hétérogène de Fédération Apprentissage Semi-Supervisé pour la Segmentation d’Images Médicales Introduction La segmentation des images médicales joue un rôle crucial dans le diagnostic clinique en aidant les médecins à identifier et analyser les pathologies. Cependant, cette tâche est souvent confrontée à des défis tels que les données sensib...