PICK : Prédire et masquer pour la segmentation semi-supervisée d'images médicales

Modèle PICK pour la segmentation semi-supervisée d’images médicales Contexte académique La segmentation d’images médicales est d’une importance cruciale dans la pratique clinique, car elle fournit des informations vitales sur les caractéristiques des organes ou des tumeurs, telles que le volume, la localisation et la forme. Ces dernières années, le...

Apprentissage Fédéré Semi-Supervisé Model-Hétérogène pour la Segmentation d'Images Médicales

Apprentissage Fédéré Semi-Supervisé Model-Hétérogène pour la Segmentation d'Images Médicales

Modèle Hétérogène de Fédération Apprentissage Semi-Supervisé pour la Segmentation d’Images Médicales Introduction La segmentation des images médicales joue un rôle crucial dans le diagnostic clinique en aidant les médecins à identifier et analyser les pathologies. Cependant, cette tâche est souvent confrontée à des défis tels que les données sensib...

Réseau de supervision bilatérale pour la segmentation d'images médicales semi-supervisée

Réseau de supervision bilatérale pour la segmentation d'images médicales semi-supervisée

Contexte et Motivation de la Recherche La segmentation des images médicales revêt une importance capitale dans l’analyse des structures anatomiques et des zones de lésions, ainsi que dans le diagnostic clinique. Cependant, les méthodes d’apprentissage supervisé existantes reposent sur une grande quantité de données annotées, alors que l’obtention d...