マルチタスク学習を通じた小児低悪性度神経膠腫の分割の改善

小児低グレード膠芽腫の分割のためのマルチタスク学習の改善 背景紹介 小児脳腫瘍の分割は、腫瘍容量分析および人工知能アルゴリズムの主要なタスクである。しかし、このプロセスは時間がかかり、神経放射線学の専門家の知識が必要です。多くの研究が成人の脳腫瘍分割の最適化に集中していますが、人工知能主導の小児腫瘍分割に関する研究はまれです。さらに、小児と成人の脳腫瘍のMRI信号特徴は異なるため、小児脳腫瘍のための特別な分割アルゴリズムが必要です。したがって、本論文は、脳腫瘍の遺伝子変化分類器を主要ネットワークに補助タスクとして追加し、マルチタスク学習(Deep Multitask Learning, DMTL)を通じて分割結果の精度を向上させることを提案します。 論文出典 この研究は以下の研究者によって行...

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRI多タスク学習によるグリオーマ分割とIDH遺伝子分類の研究報告 研究背景 グリオーマは中枢神経系で最も一般的な原発性脳腫瘍で、世界保健機関(WHO)2016年分類によると、グリオーマは低悪性度グリオーマ(LGG、グレードIIおよびIII)と高悪性度グリオーマ(HGG、グレードIV)に分類されます。イソクエン酸デヒドロゲナーゼ(Isocitrate Dehydrogenase, IDH)変異の状態はグリオーマにおける最も重要な予後指標の一つです。臨床研究では、IDH変異を持つ低悪性度グリオーマ患者の予後は通常、野生型患者よりも良好であることがわかっています。従来のグリオーマの手動セグメンテーションは時間と労力を要するもので、正確なIDH遺伝子分類と正確なグリオーマ分割は...

3D MRIスキャンを使用した神経膠腫のセグメンテーションとグレーディングのための注意誘導付きCNNフレームワーク

注意引导のCNNフレームワークを用いた3D MRIスキャンの膠芽腫の分割と評価研究 膠芽腫は人間にとって最も致命的な脳腫瘍の形式であり、これらの腫瘍の早期診断は効果的な腫瘍治療の重要なステップです。磁気共鳴画像法(MRI)は通常、脳病変の非侵襲的検査を提供します。しかし、MRIスキャンにおける腫瘍の手動検査は多くの時間を要し、エラーが発生しやすいです。そのため、自動診断は膠芽腫の臨床管理および外科的介入において極めて重要な役割を果たしています。本研究では、3D MRIスキャンから非侵襲的に腫瘍を分類するための畳み込み神経ネットワーク(CNN)に基づくフレームワークを提案します。 背景紹介 膠芽腫は一般的かつ致命的な脳腫瘍であり、その侵襲性および悪性度に応じて4段階に分類されます。低グレード腫...