CIGNN: カフレス連続血圧推定のための因果情報とグラフニューラルネットワークに基づくフレームワーク

CIGNN: 因果関係とグラフニューラルネットワークに基づく袖なし連続血圧推定フレームワーク 背景紹介 世界保健機関(WHO)のデータによると、世界中で約11.3億人が高血圧に影響を受けており、2025年にはこの数字が15億に増加すると予想されています。高血圧は心臓病や脳卒中などの心血管疾患の重要な危険因子であり、これらは世界の主要な死亡原因です。高血圧の普及は、認知症や障害の負担も増加させているため、高血圧の予防と管理は世界の健康結果を改善するために至関重要です。 連続血圧(BP)測定は、高血圧の診断と予防に豊富な情報を提供します。連続的に血圧を監視することで、患者の血圧パターンや傾向をより詳細に把握でき、治療の要否や現在の治療法の調整が必要かどうかを示すことができます。さらに、連続血圧モ...

人口レベルでの心血管診断のための心電図に基づく機械学習アルゴリズムの開発と検証

心電図に基づく大規模な心血管診断機械学習アルゴリズムの開発と検証 序論 心血管疾患(Cardiovascular diseases, CV)は、世界中で病気の負担の主な原因であり、早期診断と介入が病気の合併症、医療利用率、および費用の削減において重要です。伝統的な心電図(Electrocardiogram, ECG)は、低コストで便利な診断ツールとして、心血管疾患の検出に広く使用されています。しかし、現在のECG解釈技術(人工およびコンピュータアルゴリズムを含む)は、高次の信号相互作用および「隠れた」臨床関連パターンの識別に制限があります。人工知能(Artificial Intelligence, AI)、特に深層学習(Deep Learning, DL)の出現は、ECG信号における「隠れた...