生成式人工智能用于骨扫描图像生成并改进小数据集环境中的深度学习模型泛化能力

生成性人工智能在核医学的突破性应用:探讨合成骨显像图像的潜力及其在深度学习中的应用 背景与研究问题 近年来,人工智能(Artificial Intelligence, AI)的快速发展,引领了医学影像分析的革新。例如,深度神经网络(Deep Neural Network)在疾病诊断、解剖结构分割、患者预后预测及治疗反应评估等领域展现了巨大潜力。然而,这些技术的广泛应用通常依赖于规模庞大且精确标注的数据集。然而,在医学领域,获取如此大规模的标注数据集既昂贵又耗时,尤其是在涉及患者隐私保护时数据共享受到严格限制。数据的有限性导致深度学习模型在真实场景中的表现不理想,难以泛化。这种困局在需要跨多中心汇总数据的分布式研究中表现尤为明显。 另一方面,生成性人工智能(Generative AI)的崛起为...

机器视觉方向的光学相干断层扫描与机器人技术结合的最新进展及未来展望

光学相干断层扫描与机器人学相结合:当前研究与未来展望 学术背景 光学相干断层扫描(Optical Coherence Tomography,OCT)是一种非侵入性、高分辨率的光学成像技术,自其诞生以来就广泛应用于生物医学成像领域。它在微米级别对组织的结构进行可视化,尤其在眼科领域取得了巨大成功,例如用于角膜、视网膜等组织的成像和疾病诊断。然而,传统的OCT设备通常用于静态环境中的成像,受到体积、视场(Field of View, FOV)和操作灵活性的限制。当应用于动态、复杂的医疗场景或外科手术中时,传统OCT设备的局限性变得更加明显,例如无法适应手术目标物的移动,或难以提供实时的高分辨率成像以指导手术操作。 与此同时,医学机器人的快速发展为OCT的进一步集成提供了可能性。医学机器人以其高精...

急诊科医学影像使用增加:与短期暴露于环境高温和颗粒物空气污染的关联

气候变化与急诊医学影像使用的关系研究 学术背景 气候变化及其相关的环境暴露对人类健康产生了显著的负面影响,导致医疗服务的需求增加。高温暴露和空气质量下降与急诊科就诊和住院人数的增加密切相关。随着全球气温的持续上升,热浪的频率和强度预计将进一步增加。气候变化及其根源通过两种方式导致空气质量恶化:首先,燃烧化石燃料和其他人类活动向大气中释放有害污染物,导致温室气体排放;其次,气候变化的影响,如环境温度升高和更频繁的野火,也增加了空气污染,包括细颗粒物(PM2.5)和地面臭氧。PM2.5是一种直径小于或等于2.5微米的细颗粒物,由于其微小尺寸,可以被吸入人体,对人类健康构成重大威胁。 放射学在复杂医疗系统中占据核心地位。一方面,医学影像的提供会产生大量的温室气体排放,因此需要采取缓解措施以提高环境...

多模态大语言模型在放射学图像解释中的准确性评估

大型语言模型在放射学图像解读中的表现:与人类读者的比较研究 学术背景 近年来,大型语言模型(Large Language Models, LLMs)在多个领域展现了强大的能力,尤其是在自然语言处理方面。随着多模态LLMs的发展,这些模型不仅能够处理文本,还能够处理音频、视觉和视频等多种输入形式。代表性的多模态LLMs包括OpenAI的GPT-4 Turbo with Vision(GPT-4V)、Google DeepMind的Gemini 1.5 Pro以及Anthropic的Claude 3。这些模型在放射学领域的应用也逐渐增多,尤其是在生成和结构化放射学报告方面。然而,尽管LLMs在文本输入方面表现出色,其在解读放射学图像方面的能力仍然受到质疑。此前的研究表明,LLMs在基于患者病史和...

GPT-4V在放射学中的定量评估:多模态和多解剖区域能力

大型视觉语言模型在放射学中的应用:GPT-4V的多模态与多解剖区域能力定量评估 学术背景 近年来,大型语言模型(Large Language Models, LLMs)如OpenAI的ChatGPT在文本生成领域取得了显著进展。这些模型基于Transformer架构,通过海量文本数据进行训练,能够在无需大量示例的情况下生成可信的文本输出(few-shot learning和zero-shot learning)。LLMs在医学领域的应用也日益广泛,例如将自由文本的放射学报告转换为标准化模板,以及从肺癌的CT报告中挖掘数据。此外,LLMs在放射学考试中的表现也显示出其具备一定的“知识”储备,并能够帮助简化放射学报告。 随着GPT-4V(GPT-4 with Vision)的推出,模型不仅能够处...