使用原子力显微镜和深度神经网络确定RNA构象结构

学术背景 RNA(核糖核酸)是生命体中至关重要的分子,参与了基因表达、调控和催化等多种生物过程。尽管人类基因组的大部分被转录为RNA,但RNA分子的结构研究仍然面临巨大挑战。RNA分子通常具有高度的构象异质性和灵活性,这是其功能的前提,但也限制了传统结构解析方法(如核磁共振(NMR)、X射线晶体学和冷冻电镜(cryo-EM))的应用。特别是对于大分子RNA,由于其构象多样性和缺乏大规模RNA结构数据库,现有的蛋白质结构预测方法(如AlphaFold)无法直接应用于RNA。因此,如何准确解析大分子RNA的三维结构,尤其是其构象异质性,成为RNA结构生物学中的一个重要难题。 论文来源 这篇论文由Maximilia F. S. Degenhardt、Hermann F. Degenhardt、Yu...

预测错误处理和信息预期的锐化在面孔感知中的作用

预测错误处理和信息预期的锐化在面孔感知中的作用

科学报告 背景介绍 感知和神经处理感官信息极大程度上受先验期望的影响。感知不仅仅是被动的接收,而是通过将现有的感官信息与基于过去经验和当前情境获得的先验信息结合而成的一种主动推理过程。这种信息的结合方式可以通过不同的机制表现出来:一种是专注于异常输入,即预测误差信号处理(Prediction Error,简称PE);另一种是通过对预期信息的增强实现的锐化表示。本文研究了这两种机制在面孔感知中的表现。 研究来源 本研究由德国汉堡大学医疗中心(University Medical Center Hamburg-Eppendorf)系统神经科学系的Annika Garlichs和Helen Blank进行,论文发表于2024年4月的《Nature Communications》期刊。 研究流程及方...

一种用于DNN生成内容的隐形且鲁棒的保护方法

深度神经网络生成内容的隐形、稳健保护方法 学术背景 近年来,随着深度学习模型在工程应用中的革命性发展和广泛应用,涌现出诸如ChatGPT和DALL⋅E 2等现象级应用,这些应用对人们的日常生活产生了深远的影响。同时,人们可以利用开源的深度学习技术创建各种内容,例如图像风格迁移和图像卡通化,这些技术被称为AI生成内容(AIGC)。在这样的背景下,基于AIGC的商业应用,如美图、Prisma和Adobe Lightroom等,其版权保护变得急迫且不可避免。然而,由于许多AIGC相关技术是开源的,使得技术娴熟的个人也能够创建类似的应用。因此,当版权纠纷出现时,对于商业公司及其产品来说,是一个巨大的挑战。 当前,一些常见的版权保护方法包括但不限于注册版权、声明版权、加密版权保护等。这些方法对于实体产...

使用深度神经网络揭示人类感知和记忆中视觉与语义信息

利用深度神经网络区分人类感知和记忆中的视觉和语义信息 引言 在认知科学领域,一直存在关于人类如何在感知和记忆过程中进行人物和物体识别的研究兴趣。识别人和物的成功依赖于将感知系统生成的表征与存储在记忆中的表征进行匹配。然而,这些心理表征并非外部世界的精确副本,而是大脑的重构。了解这种重构的内容和过程是一项长期存在的挑战。这篇论文尝试通过利用深度神经网络(DNN)来揭示人类在熟悉的面孔和物体进行感知和记忆时的心理表征的内容。 论文来源 这篇论文由 Adva Shoham、西丹·丹尼尔·格罗斯巴德、Or Patashnik、Daniel Cohen-Or 和 Galit Yovel 撰写,作者全部来自Tel Aviv University。论文于2024年2月8日在线发表于《Nature Huma...