多视角时空图卷积网络与域泛化在睡眠阶段分类中的应用

睡眠阶段分类在睡眠质量评估和疾病诊断中至关重要。然而,现有的分类方法在处理时间延变的多通道脑信号的空间和时间特征、应对个体生物信号差异以及模型的可解释性方面仍然面临诸多挑战。传统的机器学习方法依赖于复杂的特征工程,而深度学习方法尽管在特征表示学习上表现出色,但在空间-时间特征利用、跨个体泛化能力以及模型可解释性方面仍有待提升。 为了应对上述挑战,北京交通大学的Ziyu Jia等人以及麻省理工学院的Li-Wei H. Lehman提出了一种多视角时空图卷积网络(Multi-View Spatial-Temporal Graph Convolutional Networks, MSTGCN),并结合域泛化用于睡眠阶段分类。 论文来源 这篇论文由北京交通大学计算机与信息技术学院的Ziyu Jia,...

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习手腕加速度计数据揭示睡眠与死亡率关联的新见解 在现代社会中,睡眠作为生命必需的基础活动,其重要性不言而喻。通过准确测量和分类睡眠/清醒状态以及不同的睡眠阶段,在临床研究中对睡眠障碍的诊断以及解读消费者设备所提供的运动和心理健康数据都是至关重要的。然而现有的非多导睡眠图(Polysomnography, PSG)睡眠分类技术主要依赖于启发式方法,这些方法常常是在相对较小的样本人群中开发的,存在一定的局限性。因此,本研究的目标是通过腕戴加速度计确定睡眠阶段分类的准确性,并探讨睡眠时长和效率与死亡率之间的关联。 研究背景 由Hang Yuan及其团队(包括Tatiana Plekhanova, Rosemary Walmsley, Amy C. Reynolds, Kathleen J....