ウェーブレットベースの時間-スペクトル-注意相関係数による運動想像EEG分類

脑機インターフェース(Brain-Computer Interface, BCI)技術は近年急速に発展しており、末梢神経や筋肉を介さず、大脳を直接制御する先端技術として注目されています。特に運動イメージ(Motor Imagery, MI)脳波(Electroencephalography, EEG)の応用において、BCI技術は大きな可能性を示しています。MI-EEG信号を分析することで、身体障害や神経筋退化の患者の生活の質を向上させる手助けが可能です。しかし、個人間の差異や大脳活動の安定性、低信号雑音比(Signal-to-Noise Ratio, SNR)などの要因により、複雑なEEG信号から有効な特徴を抽出し、MI-EEG分類システムの精度を向上させることは依然として大きな課題となって...

シングルチャネルEEGを用いた睡眠段階分類のための注意に基づく深層学習アプローチ

电子電気工程師学会 (IEEE)《神経系统与康复工程事务》2021年第29卷刊登了一篇题为《一种基于注意力深度学习的单通道EEG睡眠阶段分类方法》的文章。本文由Emadeldeen Edele、Zhenghua Chen、Chengyu Liu、Min Wu、Chee-Keong Kwoh、Xiaoli Li及Cuntai Guan等学者撰写。文章的主要目的是提出一种新型的基于注意力的深度学习模型,用于通过单通道的脑电图(EEG)信号进行自动睡眠阶段分类。 研究背景 睡眠是人类重要的生理过程,直接影响到每日生活的各个方面。有研究表明,高质量的睡眠能够促进身体健康和脑功能的提升,而睡眠中断则可能导致失眠或睡眠呼吸暂停等睡眠障碍。睡眠阶段(如浅睡和深睡)对免疫系统、记忆和代谢等起着关键作用,因此...

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

注意力ガイダンスによるグラフ構造学習ネットワークをEEGベースの聴覚注意検出に応用 学術的背景 “カクテルパーティー効果”は、複数の話者がいる環境で、人間の脳が選択的に一人の話者に注意を向け、他の人を無視する能力を表しています。しかし、聴覚障害者にとってこの状況は大きな課題となります。補聴器や人工内耳などの現代の聴覚補助機器は雑音除去に効果的ですが、リスナーが注目したいシグナルを区別することはできません。聴覚注意検出(Auditory Attention Detection、AAD)タスクは、この問題を解決する潜在能力を持っており、脳から直接注意に関連する情報を抽出します。神経科学研究によると、非侵襲的な神経記録技術である脳波(Electroencephalography、EEG)には、聴覚...

ステント搭載型電極アレイを用いた大腿神経の血管内刺激の実現可能性

経血管ステントアレイ電極による大腿神経の血管内刺激の実現可能性 近年、末梢神経の電気刺激が損傷した神経機能の回復のための治療法として注目されています。従来の電極アレイには侵襲手術による植込みが必要で、患者に大きな負担がかかっていました。そのため、低侵襲な代替案としての血管内ステント電極アレイに大きな可能性があります。本論文は、ステント電極アレイによる大腿神経の刺激可能性を調査し、市販のペースメーカリードとの性能を比較することを目的としています。 論文の背景と目的 末梢神経への電気刺激は、薬物療法では回復が難しい神経機能障害の治療に使用されてきました。例えば、難治性てんかんや抑うつ症の治療に用いられています。さらに、炎症性腸疾患、筋骨格系疾患、慢性疼痛管理、義肢への感覚フィードバックなどの適用...

視覚運動統合タスクによって誘発される脳機能ネットワークの変化

視覚運動タスクにおける機能的脳ネットワークの再編成変化 研究背景 運動の実行は、空間的に近接および離れた脳領域の協調的な活性化に依存する複雑な認知機能である。視覚運動統合タスクでは、運動の実行を計画するために視覚入力を処理および解釈し、環境と相互作用するために人間の動作を調整する必要がある。機能的磁気共鳴画像法(fMRI)に基づく研究は、前頭葉と頭頂葉の領域が視覚運動統合過程で重要な役割を果たすことを示している。さらに、運動感覚皮質も関与している。しかし、既存の研究は主にfMRI技術を用いてこれらのプロセスを探索しており、脳波(EEG)信号に関する研究はそれほど多くない。 多くの研究において、機能的連接性解析を通じて異なる脳領域間の統計的依存関係が明確にされ、異なる条件下でどのように相互作用...

GCTNet: EEG信号に基づく重度抑うつ障害検出のためのグラフ畳み込みトランスフォーマーネットワーク

GCTNet:EEG信号に基づいて重度抑うつ症を検出するグラフ畳み込みTransformerネットワーク 研究背景 重度抑うつ症(Major Depressive Disorder, MDD)は、一般的な精神障害であり、顕著かつ持続的な低気分を特徴とし、全世界で約3億5千万人に影響を与えています。MDDは自殺の主な原因の一つであり、毎年約80万人がこれにより命を落としています。現在のMDDの診断は主に患者の自己報告と臨床医の専門的判断に依存しています。しかし、診断過程の主観性は、異なる医師間での一致性の低さを引き起こし、正確でない診断をもたらす可能性があります。研究によれば、MDDと診断された一般医師の正確率はわずか47.3%に過ぎません。したがって、客観的かつ信頼できる生理指標を探索し、効...

表面筋電図信号のトポロジー:リーマン多様体での手のジェスチャーのデコード

表面筋電図信号のトポロジー構造:リーマン多様体を利用した手のジェスチャーのデコード 本論文はHarshavardhana T. Gowda(カリフォルニア大学デービス校 電子・計算機工学科)とLee M. Miller(カリフォルニア大学デービス校 心理・脳科学センター、神経生理学・行動学科、耳鼻咽喉科-頭頸部外科)によって共同執筆されました。この論文は《Journal of Neural Engineering》に掲載されました。 研究背景 表面筋電図(sEMG)信号は、皮膚の表面にセンサーを設置して運動単位(MU)の活性化からの電気信号を非侵襲的に記録するものです。これらの信号は上肢のジェスチャーのデコードに応用されており、特に切断者のリハビリ、人工肢の強化、コンピュータジェスチャー制御...

高周波定常状態視覚誘発場記録によるユーザーフレンドリービジュアル・ブレイン・コンピュータ・インターフェース

高周波定常状態視覚誘発場記録によるユーザーフレンドリービジュアル・ブレイン・コンピュータ・インターフェース

高周波定常誘発視覚野を基盤とした視覚BCIインターフェイス 背景紹介 脳-コンピュータ・インターフェイス(Brain-Computer Interface;BCI)技術は、特定の脳活動信号をデコードすることで、ユーザーが機械を制御することを可能にします。侵襲性BCIは高品質な脳信号を捕捉する点で優れていますが、その応用は主に臨床環境に制限されています。一方、脳波(Electroencephalography; EEG)などの非侵襲的手法は、BCIの広範な応用により実現可能な手段を提供します。しかし、脳脊髄液や頭蓋骨の影響でEEG信号は伝播中に非常に微弱になり、頭蓋骨の多様性や異方性導電性がEEG信号の位置を特定するのを困難にします。 磁源イメージング(Magnetoencephalograp...

低周波正弦磁場が誘発するヒトの磁気燐光感知の閾値とメカニズム

インダクタンスリン光感知の閾値とメカニズム 背景紹介 電磁場(Magnetic Field、以下MF)が人間の身体に及ぼす影響は、常に科学研究のホットトピックです。極低周波磁場(Extremely Low-Frequency Magnetic Field、以下ELF-MF)は日常生活に広く存在し、その主な発生源は電力線(50/60 Hz)や家庭電化製品です。これらの磁場は体内で電場と電流を誘起し、脳機能を調整する可能性があります。特定の現象——電磁リン光(Magnetophosphene)は、磁場によって誘発される瞬間的な視覚感知であり、国際的な電磁場暴露ガイドラインの一つの基礎となっています。 電磁リン光現象は1896年にフランスの医師Jacques-Arsène d’Arsonvalによ...

神経形態ハードウェアにおけるニューロコンピュータープリミティブを使用した逆運動学の学習

神経形態ハードウェアにおける脳に倣った計算原理を用いた学習逆運動学 背景と研究動機 現代のロボティクスの分野では、自律的な人工エージェントの低遅延神経形態処理システムを実現することに大きな可能性がある。しかし現在のハードウェアは変動性と低精度があり、そのためその安定性と信頼性を確保することが厳しい課題となっている。これらの課題に対処するため、研究者たちは脳にインスパイアされた計算原理(computational primitives)を利用しています。例えば、三重スパイクタイミング依存プラスティシティ(triplet spike-timing dependent plasticity)、基底核に基づく脱抑制メカニズムおよび協力競技ネットワークなどを運動制御に応用しています。 本研究では、混合...