使用PED算法识别自闭症谱系障碍的诊断生物标志物

使用PED算法识别自闭症谱系障碍的诊断生物标志物

通过PED算法识别自闭症谱系障碍的诊断生物标志物 在神经信息学领域,自闭症谱系障碍(ASD)的研究多集中于脑部区域之间的双向连接关系,而较少涉及脑部区域的高阶相互作用异常。为了探讨脑区的复杂关系,作者团队采用了部分熵分解(Partial Entropy Decomposition, PED)算法,通过计算三脑区(triads)的高阶相互依赖性来捕捉高阶相互作用。本文提出了一种基于PED和替代检验方法的方法,检验单个脑区对三重脑区的影响,发现了关键的三脑区。进一步采用超图模块优化算法揭示了高阶脑结构,在ASD中,右丘脑与左丘脑的连接相比于典型对照(TC)更松散。关键的冗余三脑区(左小脑、左楔前叶和右下枕回)的相互作用表现出显著的衰减,而协同的关键三脑区(右小脑、左中央后回和左舌回)的相互作用明...