3D MRI の分類のためのシャム輸送ドメイン適応フレームワーク: グリオーマおよびアルツハイマー病

Siamese-Transport領域適応フレームワークに基づく3D MRIによる膠芽腫およびアルツハイマー病の分類 研究背景 コンピュータ支援診断において、3D磁気共鳴画像法(MRI)によるスクリーニングは早期診断に重要な役割を果たし、さまざまな脳疾患の悪化を防止するのに有効です。膠芽腫は一般的な悪性脳腫瘍で、その治療法は腫瘍のグレードによって異なります。そのため、正確で効率的な3D MRI分類は医用画像分析において極めて重要です。しかし、従来の深層学習モデルは臨床における未ラベルデータに適用された場合、異なる装置やデータ収集パラメータの違いによる領域間不一致性のため、性能が著しく低下します。既存の方法は主に領域間の差異を減少させることに焦点を当てていますが、セマンティック特徴と領域情報の...

ラマンベースの機械学習プラットフォームがIDHmutとIDHwtのグリオーマ間のユニークな代謝差異を明らかにする

ラマン分光法と機械学習プラットフォームに基づくIDH変異型と野生型膠芽腫細胞の代謝差異研究 背景紹介 膠芽腫の診断と治療において、フォルマリン固定、パラフィン包埋(FFPE)組織切片が広く使用されています。しかし、包埋媒体の背景ノイズの影響を受け、FFPE組織はラマン分光法に基づく研究に限られた応用しかされていません。この問題を克服し、腫瘍サブタイプを識別するために、我々の研究チームは新しいラマン分光法に基づく機械学習プラットフォーム「APOLLO (悪性膠芽腫のラマン分光法病理学)」を開発しました。これはFFPE組織切片から膠芽腫のサブタイプを予測できるプラットフォームです。 論文の出典 本論文は、Adrian Lita、Joel Sjöberg、David Păcioianuらの学者によ...