ストローククラシファイア:電子健康記録を使用したアンサンブルコンセンサスモデリングによる虚血性脳卒中病因の分類

StrokeClassifier:人工知能ツールは電子健康記録に基づいて虚血性脳卒中を病因別に分類 プロジェクト背景および研究動機 脳卒中(特に急性虚血性脳卒中、AIS)の病因識別は二次予防において極めて重要ですが、その診断は非常に困難です。アメリカでは毎年約67.6万件の新たな虚血性脳卒中のケースが報告され、そのうち4分の1の患者は過去に脳卒中の経験があります。この病状は再発率が高く、時には死亡やさらなる障害を引き起こすこともあります。虚血性脳卒中の病因は、大動脈粥状硬化、心源性塞栓症、小血管病、その他の稀な原因など多岐にわたります。しかし、アメリカでは約20-30%の虚血性脳卒中患者が評価を受けてもなお病因が確定せず、隠源性脳卒中として分類されます。この部分の患者は再発脳卒中のリスクが特...

人口レベルでの心血管診断のための心電図に基づく機械学習アルゴリズムの開発と検証

心電図に基づく大規模な心血管診断機械学習アルゴリズムの開発と検証 序論 心血管疾患(Cardiovascular diseases, CV)は、世界中で病気の負担の主な原因であり、早期診断と介入が病気の合併症、医療利用率、および費用の削減において重要です。伝統的な心電図(Electrocardiogram, ECG)は、低コストで便利な診断ツールとして、心血管疾患の検出に広く使用されています。しかし、現在のECG解釈技術(人工およびコンピュータアルゴリズムを含む)は、高次の信号相互作用および「隠れた」臨床関連パターンの識別に制限があります。人工知能(Artificial Intelligence, AI)、特に深層学習(Deep Learning, DL)の出現は、ECG信号における「隠れた...