多モーダル深層学習による小児低悪性度神経膠腫の再発リスク予測の改善

深層学習を用いた小児低悪性度神経膠腫の術後再発予測 背景紹介 小児低悪性度神経膠腫(Pediatric Low-Grade Gliomas, PLGGs)は、小児において最も一般的な脳腫瘍の一つであり、すべての小児中枢神経系腫瘍の30%から50%を占めています。PLGGsの予後は比較的良好ですが、術後再発リスクは従来の臨床的、画像学的、および遺伝子学的要因では正確に予測することが困難です。術後再発の異質性により、特に補助療法や画像モニタリングに関する術後管理の意思決定が複雑になっています。そのため、術後再発リスクを正確に予測するツールを開発することは、患者管理の最適化と予後の改善にとって非常に重要です。 近年、深層学習(Deep Learning, DL)は、特に腫瘍のセグメンテーションや予...

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴イメージング取得および分析オントロジー 磁気共鳴イメージング(MRI)は、非侵襲的に組織の内部構造を三次元的に可視化するための生物医学的イメージング技術です。MRIは人間の脳の構造と機能の研究に広く用いられ、神経系疾患の診断においても強力なツールです。しかし、MRIデータを効果的に管理および分析する方法は常に課題となっています。この課題に対処するために、Alexander Bartnik らは「MRIO」と呼ばれる磁気共鳴イメージング取得および分析オントロジーを開発しました。 研究背景 MRI技術は、人体内部の画像を非侵襲的に取得できるため、臨床および研究において広く使用されています。臨床では、MRIは神経疾患の診断に用いられ、病変の位置と程度を評価して治療の指針を提供し...

縦方向磁気共鳴画像による膠芽腫の成長モデルと質量効果

腫瘍成長の数学モデル研究——縦断的MRIを利用したグリオーマの拡散探究 最近、《IEEE Transactions on Biomedical Engineering》に発表された論文は、グリオーマ(glioma)の数学モデリングと成長規則に関する系統的研究を報告しています。この研究は、Birkan Tunç、David A. Hormuth II、George BirosおよびThomas E. Yankeelovによって行われ、縦断的磁気共鳴画像法(MRI)のデータを通じて、腫瘍成長および質量効果(mass effect)をシミュレートする際の3つの異なる数学モデルの性能を評価しました。 研究背景 膠芽腫(glioblastoma multiforme, GBM)は、最も一般的な原発性脳...

相互強化のクロスモダリティ画像生成および登録を介した、不整合のあるPATおよびMRI画像の無監督融合

相互補完的クロスモーダル画像生成と登録方法による未アラインズPATとMRIの教師なし融合 背景と研究目的 近年、光音響トモグラフィー(Photoacoustic Tomography, PAT)と磁気共鳴イメージング(Magnetic Resonance Imaging, MRI)が最先端の生物医学イメージング技術として臨床前研究で広く応用されています。PATは高い光学コントラストと深部イメージングを提供できる一方、軟組織コントラストが低い欠点があります。これに対し、MRIは優れた軟組織イメージング能力を持ちますが、時間分解能が低いです。多モーダルデータ融合に関して一定の進展は見られましたが、画像の未アラインと空間ゆがみの問題のため、PATとMRIの画像融合はなおも難題として残っています。 ...