阐明病毒液晶中的手性传递

液晶病毒中的手性传递研究 手性(chirality)是自然界中普遍存在的现象,并且在生物学、化学、物理学和材料科学等多个领域具有重要影响。然而,从纳米尺度的构建块到宏观的螺旋结构的手性传递机制仍然是一个未解之谜。在这篇研究中,作者通过研究细丝状病毒在手性液晶相中的自组装,揭示了手性传递的关键机制。作者深入探讨了电荷表面模式和病毒主链的螺旋变形如何共同作用,形成病毒液晶相的螺旋结构。 研究背景 液晶相中的手性传递在许多领域都具有重要性。例如,从具有不对称碳原子的手性分子到有序螺旋超结构和手性块体装置,理解和控制手性传播对于生物学、化学、物理学以及纳米技术和材料科学等领域至关重要。尤其是被称为“胆甾相”的液晶相,更是手性组装的典型代表。在广泛的技术应用如显示器行业到智能窗户中,胆甾相结构也是生物...

滑模控制在不确定分数阶反应扩散忆阻神经网络中的应用

滑模控制在不确定分数阶反应扩散忆阻神经网络中的应用 近年来,随着神经网络在各种领域的广泛应用,对其控制和稳定性研究也越来越受到关注。分数阶(fractional-order, FO)忆阻神经网络(memristor neural networks, MNNs)由于其能够模拟生物神经突触的特点,在信息处理和学习等方面展示了独特的优势。然而,MNNs 在应用中面临诸多挑战,如系统的不确定性、信号传输的时滞以及复杂的时空演化特性,这些因素可能导致网络的不稳定和性能下降。因此,研究一种强鲁棒性的控制方法来解决这些问题具有重要的理论和实际意义。 在背景介绍部分,需要首先介绍忆阻器(memristor)的基本概念及其在神经网络中的应用。忆阻器作为电感、电容、以及电阻之外的第四类电子元件,由Chua于19...

一种用于流体模拟的基于注意力机制的双流水线网络

背景与研究动因 在物理学中,了解流体运动对于理解我们的环境以及我们如何与其进行交互至关重要。然而,传统的流体模拟方法由于其高计算需求,在实际应用中存在局限性。近年来,物理学驱动的神经网络被认为是一种有前途的数据驱动方法来理解复杂的自然现象。本文的作者受到平滑粒子流体动力学(SPH)方法的启发,提出了一种基于注意力机制的双管道网络架构——DualFluidNet,用于解决流体模拟中的全局控制和物理定律约束之间平衡的问题。 论文信息来源 本文由来自西安交通大学软件工程学院的Yu Chen、Shuai Zheng、Menglong Jin、Yan Chang和Nianyi Wang撰写,发表在2024年《Neural Networks》期刊上。该论文提出并探讨了一种创新的3D流体模拟方法。 研究方...

异构霍普菲尔德神经网络的研究:适应性激活函数与忆阻器结合的动态行为分析

异构霍普菲尔德神经网络的研究:适应性激活函数与忆阻器结合的动态行为分析 本研究背景探讨了神经网络中非线性因素对系统动态行为的影响。尤其是激活函数和忆阻器(memristor)做为非线性因素,常被用于构建混沌系统和模拟突触行为。霍普菲尔德神经网络(Hopfield Neural Network, HNN)因其独特的网络结构和生成复杂脑样动态的能力,而受到广泛关注。再者,当前研究多集中于使用固定激活函数的神经元对系统动态的影响,而对异构激活函数组合的研究较少。 本文由Chunhua Wang、Junhui Liang和Quanli Deng撰写,分别来自湖南大学计算机与电子工程学院和粤港澳大湾区研究院。文章在2024年1月28日提交,2024年5月21日被《Neural Networks》期刊接...

通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测

通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测

通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测 显著目标检测(Salient Object Detection, SOD)在计算机视觉领域具有重要地位,其主要任务是在图像中识别出最具视觉吸引力的区域或物体。尽管在过去几十年中,SOD模型在正常光照环境中取得了一定进展,但在低光环境下仍面临严峻挑战。在低光环境下,由于光子不足,导致图像细节缺失,严重影响了SOD的性能。而这种挑战在智能监控、自动驾驶等实际应用中显得尤为突出。 近几年来,RGB-T(可见光和热红外图像)系统因其在光线不足条件下对热红外不变性的特点,引起了越来越多研究人员的关注。借助RGB-T图像,研究人员开发了一些SOD模型,通过融合可见光和热红外线索,在一定程度上缓解了低光环境下的目标检测问题。然而,这些现有...

异质共存吸引子、大尺度幅度控制和中央循环忆阻神经网络的有限时间同步

异质共存吸引子、大尺度幅度控制和中央循环忆阻神经网络的有限时间同步 学术背景 忆阻器因其类似大脑突触的记忆性和非线性等物理特性,在类脑神经网络的混沌动力学研究中具有巨大理论和实际意义。近年来,随着大数据和人工智能领域的发展,传统的固定神经网络模型在映射大脑结构和功能上的局限性逐渐显现,这成为形态神经学研究进一步发展的主要障碍。自2008年HP实验室首次发展出物理非线性忆阻器以来,忆阻器在人工神经网络领域受到了广泛关注。忆阻神经网络(Memristive Neural Networks, MNNs)的构建对于研究人脑结构与功能之间的关系、分析人脑神经系统机制、以及增强人工智能决策、优化自适应控制和加速硬件计算都是极其重要的。 论文来源 这篇文章《Heterogeneous Coexisting...

自适应采样人工实际控制在约束系统非零和博弈中的应用

自适应采样人工实际控制在约束系统非零和博弈中的应用 背景 在现代工业和科研领域中,智能技术和控制系统的迅速发展,使得传统的控制方法难以满足保证系统稳定性和最小化能耗的严格要求。实际系统通常非常复杂,至少包含两个控制单元,并存在组件之间错综复杂的竞争与合作关系。这种情况下,设计的控制方案不仅要考虑单个控制器的效益最大化,还要实现全局优化。这类问题通常被视为非零和博弈(Non-Zero-Sum Games,NZSG),在多物理输入约束条件下,处理系统耦合动态是一个重要的研究难题。 论文来源 本文题为《Adaptive Sampling Artificial-Actual Control for Non-Zero-Sum Games of Constrained Systems》由Lu Liu和R...

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器 背景与研究动机 过去十年间,深度人工神经网络(ANNs)在人工智能领域取得了巨大进步,特别是在视觉处理方面。然而,这些先进的视觉处理技术在实现高精确度的同时,往往需要大量且耗能的计算资源,这使得其在小型飞行机器人等资源受限的情况下难以应用。 针对这一问题,神经形态硬件通过模仿生物大脑的稀疏、异步特性,实现了更高效的感知与处理能力。在机器人领域,神经形态硬件中的事件驱动相机和脉冲神经网络(SNNs)具有低延迟、低能耗的潜力。然而,当前嵌入式神经形态处理器的限制和脉冲神经网络训练的挑战使得这些技术主要应用于低维度的感知和动作任务。 为解决这些问题,本文展示了一个全神经形态的视觉到控制的流水线,用于控制飞行中的无人机。具体而言,我们训练了一个脉冲神经网络...

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间的时空感知 本研究文章发表在2024年5月15日的《Science Robotics》期刊上,题为“立体人工复眼用于三维空间的时空感知(Stereoscopic Artificial Compound Eyes for Spatiotemporal Perception in Three-Dimensional Space)”,第一作者为Byungjoon Bae,指导作者为Kyusang Lee。研究团队主要来自University of Virginia的电气与计算机工程系和材料科学与工程系。 研究背景 在自然界中,节肢动物(arthropods)的复眼是非常有效的生物视觉系统,具备广阔的视野(Field of View, FOV)和高运动敏感度,而祷蛾(mant...

用于机器人视觉的基于半球形纳米线阵列的超宽视场针孔复眼

用于机器人视觉的基于半球形纳米线阵列的超宽视场针孔复眼

用于机器人视觉的基于半球形纳米线阵列的超宽视场针孔复眼 在当代人工智能和机器人技术的迅猛发展中,视觉系统作为其中至关重要的一环,得到了广泛的关注和深入的研究。根据Zhou等人于2024年5月15日发表在《Science Robotics》上的研究论文,他们提出了一种新颖的基于生物复眼设计的人工视觉系统,该系统结合了三维打印的蜂巢结构和半球形钙钛矿纳米线光电检测阵列,从而实现了超宽视场、精准目标定位及运动跟踪功能。本文对该研究的背景、方法、结果及意义进行了全面解析。 研究背景 生物进化赋予了自然界各种视觉系统以卓越的视觉能力。例如,昆虫的复眼通过广阔的视野和快速的运动跟踪功能在自然界中取得了显著的优势。这些能力对于机器人系统具有巨大的应用潜力。然而,当前的人工复眼系统大多数依赖于可变形电子器件...