基于多参数MRI影像的脑胶质瘤分级预测方法的研究

《基于多参数MRI影像肿瘤内外放射组学特征预测胶质瘤等级》 研究背景 胶质瘤是中枢神经系统最常见的原发性脑肿瘤,占成年恶性脑肿瘤的80%。在临床实践中,治疗决策通常需要根据肿瘤的等级来进行个体化调整。世界卫生组织(WHO)将胶质瘤分为四个等级(I-IV),并将其进一步分类为低级别胶质瘤(LGG,I级和II级)和高级别胶质瘤(HGG,III级和IV级)。准确的胶质瘤分级对于制定治疗方案、实施个性化治疗以及预测预后和生存时间至关重要。目前,胶质瘤等级的诊断主要通过外科活检或组织病理学分析。然而,这种诊断方法具有侵入性且在某些情况下对患者不宜,因此急需一种非侵入性且高准确度的胶质瘤分级系统。 磁共振成像(MRI)已成为放射科医生在过去几年中诊断脑肿瘤的热门非侵入性手段。尽管有经验的放射科医生通过裸...

基于切片池化的AI辅助胶质瘤分级算法

基于切片池化的AI辅助胶质瘤分级算法

AI 辅助的基于切片池化的胶质瘤分级影像组学算法 背景介绍 胶质瘤(Glioma)是中枢神经系统中最常见和最具威胁的肿瘤,具有高发病率、高复发率、高死亡率和低治愈率。世界卫生组织(WHO)将胶质瘤分为四级(I、II、III和IV),其中I级和II级被称为低级别胶质瘤(LGG),而III级和IV级被称为高级别胶质瘤(HGG)。高级别胶质瘤是一种更具侵袭性的恶性肿瘤,其预期寿命约为两年。尽管WHO在2016年引入了分子分型,可以排除不敏感的治疗,但胶质瘤的分级仍然是一个重要的诊断标准,因为它决定了治疗方案的选择。 磁共振成像(MRI)是检测和分析胶质瘤的常用成像技术。它是一种无创且快速的方法,同时MRI图像包含了丰富的信息,这些信息仅凭医生的观察很难获取。影像组学(Radiomics)作为人工智...

多模态解耦变分自编码器与博弈论解释用于胶质瘤分级

多模态解缠变分自编码器与博弈理论解释性在胶质瘤分级中的应用 背景介绍 在中枢神经系统中,胶质瘤是最常见的原发性脑肿瘤。根据细胞活动和侵袭性,世界卫生组织(WHO)将其分为I至IV级,其中I和II级称为低级别胶质瘤(LGG),III和IV级称为高级别胶质瘤(HGG)。在临床实践中,治疗决策通常需要针对不同的肿瘤级别进行个性化调整。因此,准确的胶质瘤分级对于治疗决策、个性化治疗以及患者预后的预测至关重要。目前,胶质瘤分级的金标准仍然是通过手术活检或组织病理学分析。然而,这种方法是侵入性的,并且不具有实时性,可能导致癫痫、感染甚至沿穿刺路线的肿瘤转移。因此,开发一种能够在术前无创且及时诊断胶质瘤级别的分级系统具有重要意义。 磁共振成像(MRI)广泛应用于胶质瘤患者的临床术前诊断、治疗决策和预后评估...

数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...

基于深度学习放射组学模型结合临床放射特征检测胰腺导管腺癌患者隐匿性腹膜转移的研究与验证

深度学习放射组学模型结合临床放射学特征预测胰腺导管腺癌患者隐性腹膜转移的开发与验证 背景介绍 胰腺导管腺癌(Pancreatic Ductal Adenocarcinoma, PDAC),一种极为致命的恶性肿瘤,其5年生存率约为11%。其糟糕的预后部分是由于80-85%的患者在出现症状时,已经被诊断出为晚期疾病,不可切除或已经发生转移,包括隐性腹膜转移(Occult Peritoneal Metastases, OPM)。腹膜是PDAC转移的第二常见途径,约10-20%的患者在首次诊断时即表现为腹膜转移,对于这一部分患者来说,早期识别腹膜转移将极大地影响治疗选择以避免不必要的手术。 传统的腹膜转移诊断依赖于计算机断层扫描(CT),但是由于缺乏明显的标志,早期腹膜转移往往难以被发现。诊断性分期...

基于放射组学的术后立体定向放疗后脑转移瘤患者局部控制预测

放射组学在脑转移患者术后立体定向放疗局部控制预测中的应用 学术背景 脑转移(Brain Metastases, BMs)是最常见的恶性脑肿瘤,其发病率远远超过了原发性脑瘤如胶质瘤。最近的医疗指南建议对症状明显或较大的脑转移患者进行手术治疗。为了提高局部控制率,建议对一到两个切除的BMs患者进行切除腔的立体定向放疗(Stereotactic Radiotherapy, SRT),方法可以在术后12个月内实现70%到90%的局部控制率。然而,即使在辅助SRT后,局部失败(Local Failure, LF)的风险仍然存在,这引发了对预治疗放射组学(radiomics)预测工具的需求,以识别高LF风险的患者。 研究主要信息 该研究由Josef A. Buchner等发表在《Neuro-Oncolo...