Évaluation fiable des cartes d'attribution dans les CNN : une approche basée sur les perturbations

Évaluation fiable des cartes d’attribution dans les CNNs : une approche basée sur les perturbations Contexte et motivation de la recherche Avec le succès croissant des modèles d’apprentissage profond dans diverses tâches, la communauté scientifique met de plus en plus l’accent sur leur explicabilité et leur transparence. Bien que ces modèles excell...

Un modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances: Vers la prise de décision pour la pratique générale

Un modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances: Vers la prise de décision pour la pratique générale

Modèle de raisonnement cognitif explicable et personnalisé basé sur un graphe de connaissances pour la prise de décision en médecine générale Introduction La médecine générale, en tant que composante importante des soins médicaux communautaires et familiaux, couvre différents âges, sexes, systèmes d’organes et divers types de maladies. Son principa...

Transformateur de Sujet Graphique Amélioré par la Connaissance pour la Résumé de Texte Biomédical Explicable

Application de Transformer Thématique Renforcé par la Connaissance dans le Résumé Explicable de Textes Biomédicaux Contexte de la Recherche Avec l’augmentation continue du volume de publications biomédicales, la tâche de résumé automatique des textes biomédicaux devient de plus en plus importante. En 2021, rien que dans la base de données PubMed, 1...

Observations critiques dans le diagnostic à base de modèles

Dans le diagnostic de panne piloté par modèle, il est très précieux de pouvoir identifier les données d’observation clés qui conduisent à des anomalies du système. Cet article présente un cadre et un algorithme pour identifier les données d’observation clés. Ce cadre détermine quelles observations sont cruciales pour le résultat du diagnostic en ab...