多模态解耦变分自编码器与博弈论解释用于胶质瘤分级

多模态解缠变分自编码器与博弈理论解释性在胶质瘤分级中的应用 背景介绍 在中枢神经系统中,胶质瘤是最常见的原发性脑肿瘤。根据细胞活动和侵袭性,世界卫生组织(WHO)将其分为I至IV级,其中I和II级称为低级别胶质瘤(LGG),III和IV级称为高级别胶质瘤(HGG)。在临床实践中,治疗决策通常需要针对不同的肿瘤级别进行个性化调整。因此,准确的胶质瘤分级对于治疗决策、个性化治疗以及患者预后的预测至关重要。目前,胶质瘤分级的金标准仍然是通过手术活检或组织病理学分析。然而,这种方法是侵入性的,并且不具有实时性,可能导致癫痫、感染甚至沿穿刺路线的肿瘤转移。因此,开发一种能够在术前无创且及时诊断胶质瘤级别的分级系统具有重要意义。 磁共振成像(MRI)广泛应用于胶质瘤患者的临床术前诊断、治疗决策和预后评估...

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态 MRI 基于多任务学习的胶质瘤分割和IDH 基因分型

全自动多模态MRI多任务学习用于胶质瘤分割和IDH基因分型的研究报告 研究背景 胶质瘤是中枢神经系统中最常见的原发性脑肿瘤,根据世界卫生组织(WHO)2016年分类,胶质瘤分为低级别胶质瘤(LGG,级别II和III)和高级别胶质瘤(HGG,级别IV)。异柠檬酸脱氢酶(Isocitrate Dehydrogenase, IDH)突变状态是胶质瘤中最重要的预后标志之一。临床研究发现,含有IDH突变的低级别胶质瘤患者预后通常优于IDH野生型患者。传统的胶质瘤手工分割费时费力,而准确的IDH基因分型和精确的胶质瘤分割对于指导治疗和评估预后具有重要意义。由于多模态磁共振成像(Magnetic Resonance Imaging, MRI)的非侵入性和日常临床实践中的重要作用,它被认为是最有前途的候选技...

基于注意力引导的卷积神经网络框架用于3D MRI扫描的胶质瘤分割和分级

注意引导的CNN框架用于3D MRI扫描的胶质瘤分割和评级研究 胶质瘤是人类最致命的脑肿瘤形式,及时诊断这些肿瘤是有效肿瘤治疗的重要一步。磁共振成像(MRI)通常提供对脑部病变的无创检查。然而,手动检查MRI扫描中的肿瘤需要大量时间,并且容易出错。因此,自动诊断肿瘤在胶质瘤的临床管理和外科干预中起着至关重要的作用。在这项研究中,我们提出了一个基于卷积神经网络(CNN)的框架,用于从3D MRI扫描中无创分级肿瘤。 背景介绍 胶质瘤是常见且致命的脑肿瘤,根据其侵袭性和恶性程度可以分为四级。低级别肿瘤(I-III级)通常较不具侵袭性且对治疗反应较好。然而,高级别肿瘤(IV级)具有高度侵袭性,例如胶质母细胞瘤,其治疗效果较差,仅有5%的患者能存活5年。 为了使用医疗影像开展胶质瘤的研究,研究者通常...

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络

脑胶质瘤分割的上下文感知网络研究报告 脑胶质瘤是一种常见的成人脑肿瘤,它对健康有严重的损害,并且具有高死亡率。为了提供早期诊断、手术规划和术后观察的充分证据,多模态磁共振成像(MRI)已经广泛应用于该领域。本文研究的目的是在脑胶质瘤的自动化分割中纳入上下文信息,这在处理局部模糊性方面提供了基本线索。 研究背景 先前的研究表明,基于深度神经网络的方法在脑胶质瘤分割中显示了很有希望的技术。然而,这些方法缺乏强有力的策略来结合肿瘤细胞及其周围的上下文信息。已有的自动分割方法虽然提高了分割精度,但仍然存在局部模糊性问题,没有充分考虑肿瘤细胞与其周围环境的关系。 论文来源 该研究由Zhihua Liu, Lei Tong, Long Chen, Feixiang Zhou, Zheheng Jiang...

利用透明机器学习与解释性AI提升胶质瘤预后

胶质瘤预后的透明化机器学习和解释性洞察力应用于解释性人工智能的赋能 学术背景 本研究致力于开发一种可靠的技术,来通过多种机器学习方法及深度学习方法,结合解释性人工智能(XAI,Explainable Artificial Intelligence)技术检测患者是否患有特定类型的脑肿瘤——胶质瘤。胶质瘤(glioma)是起源于胶质细胞的中枢神经系统癌症的一种,具有快速生长和侵袭健康脑组织的特性,常见的治疗方法包括手术、放射治疗、化疗等。通过整合患者数据,包括医疗记录、遗传档案等,机器学习算法能够预测每个个体对不同医疗干预的反应。 论文来源 该论文由Anisha Palkar、Cifha Crecil Dias(IEEE高级会员)、Krishnaraj Chadaga和Niranjana Sam...

基于群稀疏先验的荧光分子断层扫描用于胶质瘤形态重建

基于群稀疏先验的荧光分子断层成像用于胶质瘤形态重建技术的研究报告 一、学术背景和研究动机 荧光分子断层成像(Fluorescence Molecular Tomography,FMT)是一种重要的生命科学工具,通过该技术可以实现荧光源位置的非侵入实时三维(3D)可视化。由于其敏感度高、成本低的优点,FMT被广泛应用于肿瘤研究。然而,FMT的重建过程复杂且困难。尽管近年来FMT重建方法发展迅速,但形态重建依然是一个难题。因此,本研究的目的是在胶质瘤研究中实现FMT的形态重建性能。 二、论文来源与作者信息 本论文发表于IEEE Transactions on Biomedical Engineering期刊2020年5月第67卷第5期上,题为“Fluorescence Molecular Tom...

数据工程赋能的胶质瘤生存分析

脑胶质瘤患者的生存分析研究:数据工程赋能综述 引言 脑胶质瘤是一种在胶质细胞中发生的肿瘤,它们占全部原发性脑和中央神经系统肿瘤的26.7%。由于肿瘤异质性的存在,脑胶质瘤患者的生存分析成为了临床管理中的一个关键任务。在过去几十年里,研究者们提出了多种生存分析方法,结合不同类型的数据,如影像和遗传信息。尤其是近年来,机器学习技术和深度学习的兴起改变了传统的基于统计分析的生存分析方法。本文综述了利用诊断影像技术和基因组平台获得的预后参数,以及用于预后预测的技术、学习和统计分析算法,突出了现有生存预测研究的挑战,并提出了该领域研究的未来方向。 作者及出版信息 作者: Navodini Wijethilake (斯里兰卡莫拉图瓦大学计算机科学与工程系研究成员) 合著者: Dulani Meedeni...

基于影像表型和基因型的深度学习来预测胶质母细胞瘤患者的总体生存时间

基于影像表型和基因型的深度学习来预测胶质母细胞瘤患者的总体生存时间

在全球范围内,恶性脑肿瘤中最常见和最致命的是胶质母细胞瘤(Glioblastoma, GBM)。近年来,不断有研究尝试通过机器学习技术,基于术前的单模态或多模态成像表型来预测GBM患者的总生存时间(Overall Survival, OS)。尽管这些机器学习方法在预测上取得了一定的进展,但多数研究并未考虑基于影像学的OS预测方法中包含的肿瘤基因型信息,而这些信息对预后有很强的指示作用。为解决这般问题,Tang Zhenyu、Xu Yuyun、Jin Lei 等人于2020年6月在《IEEE Transactions on Medical Imaging》上发表了题为“Deep Learning of Imaging Phenotype and Genotype for Predicting ...

St. Jude Survivorship Portal:分享和分析大规模临床和基因组数据集

St. Jude Survivorship Portal:分享和分析大规模临床和基因组数据集

St. Jude Survivorship Portal: 分析及共享儿童癌症幸存者的大规模临床和基因组数据 研究背景 在美国,儿童癌症的五年生存率已从20世纪70年代的约60%上升到今天的超过85%。尽管生存率显著提高,但这些儿童癌症幸存者却面临着由于癌症及其治疗而导致的各种不良健康结果的风险。这些不良结果包括过早死亡、器官功能障碍、新生肿瘤、不良的社会经济结果、心理社会挑战以及总体生活质量的下降等。为了应对这些问题,主要的研究工作集中在确定其潜在原因、相关风险以及最易感的患者亚群。 与此有关的大规模纵向研究如St. Jude Lifetime Cohort (SJLife)和Childhood Cancer Survivor Study (CCSS)已生成了大量关于幸存者的综合数据,涵盖...

通过计算饱和诱变法鉴定克隆性造血驱动突变

引言 在健康的造血过程中,一组造血干细胞(Hematopoietic Stem Cells,简称HSC)贡献了所有与血液相关的谱系。然而,随着年龄的增长,这一过程常常会导致克隆性造血(Clonal Hematopoiesis,简称CH)的发生,即由某个HSC源头的克隆扩展,占据了很大一部分的血细胞和血小板。这个克隆扩展现象由HSC在生命过程中获得的躯体突变驱动,并在老年人群中高度普遍。与CH相关的基因突变赋予HSC生长优势,使其在造血过程中受到正选择(1-13)。近年来,大量研究表明,CH与血液恶性肿瘤发展、心血管疾病、全因死亡率以及实体肿瘤和传染病的风险增加相关(2, 7, 14-20)。尽管最近的深入研究已确认了大约60个CH驱动基因(1, 12, 13, 21),但我们对这些基因中的哪...