基于互锚对比学习的少样本关系抽取研究
利用实例-标签动态的互锚对比学习进行少样本关系抽取 学术背景 在自然语言处理(Natural Language Processing, NLP)领域,关系抽取(Relation Extraction, RE)是一项基础任务,旨在从文本中识别并提取实体之间的关系。然而,传统的监督学习方法依赖于大量标注数据,而在实际应用中,标注数据的稀缺性严重制约了模型的性能。为了应对这一挑战,少样本关系抽取(Few-Shot Relation Extraction, FSRE)应运而生,旨在通过少量标注数据训练模型,使其能够在有限的样本下准确识别实体关系。 近年来,预训练语言模型(Pre-trained Language Models, PLMs)在FSRE任务中取得了显著进展,尤其是结合对比学习(Contr...