基于时空图的智能电网对抗性虚假数据注入规避攻击的生成与检测

基于时空图的智能电网对抗性虚假数据注入逃逸攻击的生成与检测 背景介绍 随着现代智能电网的不断发展,电网作为一种典型的网络化信息物理系统(Cyber-Physical Systems, CPS),因其需要在不同组件之间交换大量数据,面临各种安全威胁。其中,虚假数据注入攻击(False Data Injection Attacks, FDIAs)因其能够篡改传感器数据而备受关注。攻击者可以借助这些虚假数据绕过传统的坏数据检测系统(Bad Data Detection, BDD),从而导致错误的操作决策,甚至可能使系统过载。然而,传统FDIAs相对简单,其明显的数据异常容易被数据驱动的机器学习模型检测到。 相比之下,对抗性虚假数据注入逃逸攻击(Adversarial False Data Inje...

基于简化核的成本敏感广义学习系统在故障诊断中的应用

基于简化核的代价敏感广泛学习系统(SKCSBLS)应对不平衡故障诊断的研究报告 研究背景及意义 进入工业4.0时代,智能制造日益依赖于工业大数据分析,通过提取机器运行数据中的关键信息,可以提升设备健康管理的有效性,从而实现企业生产的安全性和高效性。然而,在实际工业应用中,不平衡数据给智能制造领域的故障诊断带来了严峻挑战。多数情况下,设备运行数据中正常状态的数据占压倒性多数,而故障数据往往稀少。这种类别分布不均衡可能导致模型的预测准确性下降,并使得小类别(故障类别)难以被有效识别。 目前,深度学习方法(如卷积神经网络和递归神经网络)被广泛应用于故障检测。但这些模型需要大量的训练数据,如果数据量有限,则易出现过拟合问题;此外,这些方法的计算复杂度较高,训练耗时较长。因此,科研人员开始关注结构较为...

具有Wiener和Poisson噪声的随机马尔可夫跳跃系统的最优控制:两种强化学习方法

基于Wiener和Poisson噪声的随机Markov跳跃系统的最优控制:两种强化学习方法 学术背景 在现代控制理论中,最优控制是一个非常重要的研究领域,其目标是在各种约束条件下为动态系统设计一个最优控制策略,以最小化给定的成本函数。对于随机系统,传统的最优控制方法通常需要系统的完整模型信息,这在实际应用中存在很大的局限性。近年来,强化学习(Reinforcement Learning, RL)作为一种无需系统模型的方法,逐渐成为解决最优控制问题的重要工具。RL通过直接从数据中学习,能够获得最优值函数和最优策略,并且通过策略迭代(Policy Iteration)方法可以不断改进性能。 随机Markov跳跃系统(Stochastic Markovian Jump Systems, SMJS)...

基于实时神经网络的智能耳机系统创建可编程声泡

探讨“声泡”与未来耳戴式设备:基于实时神经网络的创新研究 在日常生活中,噪声和复杂音景 (Acoustic Scene) 经常造成话语难以辨别,特别是在拥挤的环境中,例如餐厅、会议室或飞机上。传统的降噪耳机虽然能在一定程度上抑制环境噪声,但无法区分音源的距离,亦无法根据特定音源的空间位置精准塑造声场。基于此背景,来自华盛顿大学Paul G. Allen计算机科学与工程学院、微软以及AssemblyAI的团队开展了一项重要研究。他们开发了一套能够创建“声泡”(Sound Bubbles)的智能耳戴式设备,借助多通道麦克风阵列及实时嵌入式神经网络,解决了上述困境。本文发表在《Nature Electronics》2024年11月期,展示了这项研究在听觉增强领域的重要突破和技术实现。 技术背景与科...

人工智能解释类型对胸部X光诊断性能及医生信任度的影响

人工智能解释类型对医生诊断表现和信任的影响 学术背景 近年来,人工智能(Artificial Intelligence, AI)在医疗保健和放射学领域的诊断系统发展迅速,尤其是在辅助超负荷工作的医疗提供者方面,AI系统展现了改善患者护理的潜力。截至2022年,美国食品药品监督管理局(FDA)已批准了190个放射学AI软件程序,且批准率逐年上升。然而,AI从概念验证到实际临床应用的整合仍存在巨大鸿沟。为了弥合这一差距,培养对AI建议的适当信任至关重要。尽管高准确性的AI系统已在真实临床环境中证明了其提升医生诊断表现和患者结果的能力,但错误的AI建议可能会降低诊断表现,这无疑导致了AI在临床中的延迟应用。 医生们呼吁AI工具应具备透明性和可解释性。在医学影像领域,AI工具可以提供两类解释:局部解...

基于深度强化学习的液体透镜显微镜自动对焦技术

基于深度强化学习的液体透镜显微镜自动对焦技术研究 学术背景 显微镜成像在科学研究、生物医学研究和工程应用中扮演着至关重要的角色。然而,传统显微镜及其自动对焦技术在实现系统小型化和快速精准对焦方面面临着硬件限制和软件速度缓慢的问题。传统显微镜通常采用多个固定焦距透镜和机械结构来实现放大和对焦功能,导致设备体积庞大、对焦速度慢,难以在狭小空间内快速操作。液体透镜(liquid lens)因其无机械部件、通过电信号调节焦距的特点,具有体积小、响应速度快、制造成本低等优势,成为解决这些问题的潜在方案。 近年来,人工智能和新光学元件的发展为显微镜自动对焦技术带来了新的研究方向。传统的自动对焦方法依赖于图像清晰度评估,通常需要多次图像采集和评估,速度较慢。深度学习技术的引入使得直接从单张图像预测焦平面位...

并行机械计算:能够进行多任务处理的超材料

并行机械计算:能够进行多任务处理的超材料 学术背景 在数字计算平台取代模拟计算数十年后,随着超材料和复杂制造技术的发展,模拟计算重新引起了广泛关注。特别是基于波的模拟计算机,通过对入射波前进行空间变换来实现所需的数学运算,因其能够直接以未处理的形式编码输入信号,绕过了模拟到数字的转换,而备受青睐。然而,这些系统本质上仅限于单任务配置,无法同时执行多个任务或进行并行计算,这成为推动具有更广泛计算能力的机械计算设备发展的主要障碍。本文提出了一种在同一架构结构中同时处理独立计算任务的途径,通过打破一组超表面构建块的时间不变性,自生成多个频率偏移的波束,这些波束从基础信号中吸收显著的能量。这些可调谐谐波的产生使得不同的计算任务能够分配到独立的“通道”中,从而有效地实现模拟机械计算机的多任务处理。 论...

有限变形空间的基于弹性形状分析的表面分析框架

# 基于未配准表面空间的弹性形状分析研究综述 ## 背景介绍 三维表面分析近年来已成为计算机视觉领域的热点研究方向之一。这种需求的兴起主要源于高精度3D扫描设备的普及,它使得人类健康分析、面部动画、计算机图形学、合成人体数据生成以及计算解剖学等领域获得了丰富的研究和应用数据。然而,传统的表面形状分析方法通常依赖一致的网格结构和点对应关系,这在实际应用中难以实现,因为真实数据通常缺乏一致的采样和拓扑结构。为了解决这些挑战,研究者们提出了基于黎曼几何的弹性形状分析方法(Elastic Shape Analysis, ESA),该方法通过定义形状空间上的弹性度量来比较表面形状。 这篇发表于 **International Journal of Computer Vision** 的论文《Basis...

改进的3D指纹特征识别方法:基于可泛化的神经渲染

基于FingerNeRF的3D手指生物识别研究综述 背景与研究意义 随着生物识别技术的发展,三维(3D)生物识别因其更高的准确性、更强的抗伪装能力以及对拍摄角度变化的鲁棒性,逐渐成为主流研究方向之一。其中,3D手指生物识别技术因其生物特征(如指纹、指静脉、指关节等)易于获取且广泛使用,在学术界和工业界备受关注。然而,现有的3D生物识别方法普遍依赖显式的3D重建技术,这些方法在实际应用中面临两大挑战: 信息丢失:显式重建过程中不可避免地会丢失部分细节信息,直接影响后续识别任务的性能。 硬件与算法的紧耦合性:重建算法往往与特定硬件设备绑定,缺乏通用性,难以适应不同模态的数据或设备。 为解决上述问题,研究者提出了一种基于隐式神经辐射场(Neural Radiance Fields, NeRF)的F...

基于课程学习的记忆辅助知识转移框架用于弱监督在线活动检测

研究背景与研究意义 近年来,视频理解领域中弱监督在线活动检测(Weakly Supervised Online Activity Detection, WS-OAD)作为高水平视频理解的一个重要课题,得到了广泛关注。其主要目标是通过仅使用廉价的视频级标注,在流媒体视频中逐帧检测正在进行的活动。这一任务在许多实际应用场景中具有重要价值,包括自动驾驶、公共安全监控、机器人导航及增强现实等。 尽管全监督方法(Fully Supervised Methods)已在在线活动检测(OAD)中取得了显著进展,但它们严重依赖于密集的帧级注释(Frame-level Annotations),这不仅成本高昂且易受噪声影响,从而限制了模型的扩展性。弱监督设置旨在解决这一问题,但因其在线约束(Online Con...