T1画像における脳組織分割のための強化空間ファジィC-均値アルゴリズム

脳組織分割のための強化型スペーシャルファジィC平均アルゴリズム研究報告 学術背景 磁気共鳴画像(MRI)は神経学において重要な役割を果たしており、特に脳組織の正確な分割において顕著です。正確な組織分割は脳損傷や神経変性疾患の診断にとって不可欠です。MRIデータの分割は、同様の強度、テクスチャ、および均一性を持つ異なる領域に画像を分割することを伴います。これは医学画像解析における重要なタスクです。特に、脳白質(White Matter, WM)、灰質(Gray Matter, GM)、および脳脊髄液(Cerebrospinal Fluid, CSF)などの脳組織の区別において、正確な組織分割と病変の分離は、医療専門家が脳損傷および神経変性疾患を診断する能力を大幅に向上させることができます。 し...

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴画像取得および分析オントロジー

MRIO: 磁気共鳴イメージング取得および分析オントロジー 磁気共鳴イメージング(MRI)は、非侵襲的に組織の内部構造を三次元的に可視化するための生物医学的イメージング技術です。MRIは人間の脳の構造と機能の研究に広く用いられ、神経系疾患の診断においても強力なツールです。しかし、MRIデータを効果的に管理および分析する方法は常に課題となっています。この課題に対処するために、Alexander Bartnik らは「MRIO」と呼ばれる磁気共鳴イメージング取得および分析オントロジーを開発しました。 研究背景 MRI技術は、人体内部の画像を非侵襲的に取得できるため、臨床および研究において広く使用されています。臨床では、MRIは神経疾患の診断に用いられ、病変の位置と程度を評価して治療の指針を提供し...

オンラインと対面の交差点における実践的神経情報学教育:Neurohackademyからの教訓

Neurohackademy:オンラインとオフラインを組み合わせた神経情報学の教育 背景紹介 近年、人類神経科学はビッグデータの時代に突入しています。人類コネクトーム計画(Human Connectome Project)、青少年脳認知発達(ABCD)研究などのプロジェクトのおかげで、科学者たちは以前には想像もできなかった規模と範囲のデータセットを取得することが可能となりました。これらのデータセットは基礎および臨床研究において重要な科学的潜在力を持っています。しかし、これらのデータセットは研究者に対して新たな挑戦ももたらしています。データの生成、処理、アクセス、分析、理解などがその一例です。特に大きな課題として、「ビッグデータスキルギャップ」と呼ばれるものがあります。これらのデータセットを活...

腫瘍サイズはすべてではありません:腫瘍学における精密医療バイオマーカーとしてのラジオミクスの進展

在当今の腫瘍学臨床実践および薬物開発分野において、腫瘍反応の評価方法は革新の瀬戸際に立っています。1981年に世界保健機構(WHO)が抗癌薬の効果を評価するための腫瘍反応分類基準を提案して以来、この分野は何度も改良を経験してきました。最もよく知られているのは、1995年に設立された実体腫瘍における反応評価基準(RECIST)作業部会によるものです。この作業部会は、カナダ国立がん研究所、米国国立がん研究所、および欧州がん研究治療機構と協力して多数の症例データに基づく根拠に基づいた勧告を構築し、RECIST 1.0および1.1バージョンの公開を促進しました。これらのバージョンは、客観的な反応率などの画像学的エンドポイントを確定する上で重要な役割を果たしてきました。 しかし、腫瘍生物学のより深い理...

非小細胞肺癌に対する免疫チェックポイント阻害剤の応答予測のためのAI搭載PD-L1腫瘍割合スコア解釈の臨床検証

非小細胞肺癌における免疫チェックポイント阻害剤の応答予測におけるPD-L1腫瘍割合スコアの人工知能解釈の臨床検証 腫瘍治療と診断の分野では、PD-L1(Programmed Death-Ligand 1)腫瘍割合スコア(TPS)の評価が極めて重要です。特に非小細胞肺癌(NSCLC)における免疫チェックポイント阻害剤(ICI)治療の反応予測において重要です。しかし、病理学者によるPD-L1 TPSの評価には、観察者間・観察者内の偏差や腫瘍内部の異質性など、主観的・客観的な要因の制約があります。最近の研究は、病理学画像に定量的なバイオマーカー評価能力を提供する人工知能(AI)の技術応用が、病理学診断におけるAIの応用の可能性を示唆しています。 この研究はソウル国立大学仁川病院のHyojin Ki...

脳腫瘍切除のための機械学習ベースの定量的ハイパースペクトル画像ガイダンスに向けて

脳腫瘍切除のための機械学習ベースの定量的ハイパースペクトル画像ガイダンスに向けて

機械学習支援の定量高光スペクトルイメージングによる脳腫瘍切除のガイド効果研究 背景紹介 悪性グリオーマの完全切除は、浸潤領域の腫瘍細胞を区別するのが難しいという課題に常に直面しています。この研究の背景は、神経外科手術において、5-アミノレブリン酸(5-aminolevulinic acid、略称5-ALA)を使用することで、プロトポルフィリンIX(protoporphyrin IX、略称PPIX)の蛍光ガイドを実現し、腫瘍の切除率を向上させることです。しかし、スペクトルイメージングの助けを借りても、多くの低悪性度グリオーマや一部の高悪性度腫瘍は、PPIXの蓄積が少ないため、蛍光が弱く、腫瘍の区別が困難です。したがって、異なる種類の腫瘍組織におけるPPIX発光スペクトルを理解し、これらのスペク...

対照的な自己監督学習による心エコー図からの効率的な深層学習ベースの自動診断

深層学習における超音波心動図自動診断の新たな突破:自己教師あり学習法の比較研究レポート 研究背景 人工知能と機械学習技術が急速に発展する中、それらは医用画像診断分野でますます重要な役割を果たしています。特に、自己教師あり学習(Self-Supervised Learning, SSL)は、ラベルデータが希少な問題に効果を発揮し、医用画像のラベル取得が困難かつ高価である場合に重要となります。通常、自己教師あり学習の多くの方法は、豊富な時間情報を含むビデオ画像、例えば超音波心動図に特別に適応・最適化されていません。したがって、小型のラベルデータセットでの自動医用画像診断の性能を向上させるために、超音波心動図ビデオに特化した自己教師あり対照学習法の開発が特に切迫し、重要です。 研究出典 本研究は、...

ソーシャルメディアにおけるグルカゴン様ペプチド-1受容体作動薬に対する一般の認識を評価するための大規模言語モデルの使用

在全球範囲において、肥満の流行傾向が絶えず高まり、公衆衛生に重大な影響を与えています。肥満は独立して心血管疾患の発症率および死亡率に関連しており、毎年衛生システムに対して2,000億ドルを超える経済的負担をもたらすと推定されています。近年、インスリン・グルカゴン様ペプチド-1(GLP-1)受容体作動薬は体重減少および心血管リスクの低減に糖尿病とは無関係に効果を示すことから、治療の方法を変えるものとなっています。この背景の中、スタンフォード大学のスレイマン・ソマニ、スネハ・S. ジャイン、アシシュ・サラジュ、アレクサンダー・T. サンドゥー、ティナ・ヘルナンデス-ブサール、およびファティマ・ロドリゲスらは、GLP-1受容体作動薬に関するソーシャルメディアでの公衆認識に関する研究を行い、『Com...

炎症性筋疾患の細胞タイプマッピングが封入体筋炎における選択的筋線維脆弱性を強調する

炎性筋症における筋繊維タイプの異質性表現と封入体筋炎の選択的感受性 年齢とともに、炎性筋症の発症率が徐々に増加しており、その中でも封入体筋炎(IBM)は最も一般的なタイプであり、現在有効な治療法は存在しません。他の炎性筋症とは異なり、IBMは慢性的な経過をたどり、炎症と変性病理の特性を有します。さらに複雑なのは、IBMの進行を引き起こす要因と分子的な駆動要因が未だ明確でないことです。この疾患を深く研究するために、研究者たちは単核RNAシーケンシングと空間トランスクリプトミクスを用いて、患者の筋肉生検サンプルの細胞タイプ特異的な駆動要因のマッピングを行い、IBM筋肉と免疫介在性壊死性筋症(IMNM)および非炎症性の骨格筋サンプルを比較しました。 研究背景と目的 IBMは高齢者に最も多い炎性筋症...

マルチタスク学習を通じた小児低悪性度神経膠腫の分割の改善

小児低グレード膠芽腫の分割のためのマルチタスク学習の改善 背景紹介 小児脳腫瘍の分割は、腫瘍容量分析および人工知能アルゴリズムの主要なタスクである。しかし、このプロセスは時間がかかり、神経放射線学の専門家の知識が必要です。多くの研究が成人の脳腫瘍分割の最適化に集中していますが、人工知能主導の小児腫瘍分割に関する研究はまれです。さらに、小児と成人の脳腫瘍のMRI信号特徴は異なるため、小児脳腫瘍のための特別な分割アルゴリズムが必要です。したがって、本論文は、脳腫瘍の遺伝子変化分類器を主要ネットワークに補助タスクとして追加し、マルチタスク学習(Deep Multitask Learning, DMTL)を通じて分割結果の精度を向上させることを提案します。 論文出典 この研究は以下の研究者によって行...