k-emophone: 実験中の感情、ストレス、および注意ラベルを含むモバイルおよびウェアラブルデータセット

科学データレポート | K-emophone: 場所特定の感情、ストレス、注意力ラベルを含むモバイルおよびウェアラブルデータセット 背景紹介 低コストのモバイルおよびウェアラブルセンサーの普及に伴い、多くの研究がこれらのデバイスを利用して人間の精神的健康、生産性、行動パターンを追跡および分析しています。しかし、これまでのところ、実験室環境で収集されたデータセットは発展してきた一方で、実世界のシナリオで収集された感情、ストレス、注意力などのラベルを含むデータセットが不足しており、感情計算(Affective Computing)および人間とコンピュータのインタラクション(Human-computer Interaction)分野の研究進展を制限しています。 研究の出所 本研究は、Soowon ...

深層学習に基づく運動イメージEEG分類、皮質源画像の機能的接続を利用する

深層学習に基づく運動想像EEG分類における皮質源イメージングの機能的結合の活用 研究背景と動機 脳-機械インターフェース(BCI)は、関連する神経経路や筋肉に依存せずに脳活動情報を直接デコードし、外部デバイスとの通信や制御を実現するシステムです。BCIシステムにおいて、よく使われる信号には脳波(EEG)、脳磁図(MEG)、および機能的磁気共鳴画像(fMRI)が含まれます。その中でも、EEGは非侵襲、実施の容易さ、低コスト、倫理的チャレンジがないなどの利点から最も一般的に使用されます。 運動想像(Motor Imagery, MI)はBCIの重要なパラダイムで、刺激条件がない場合でも、運動想像タスク中に運動想像EEG信号(MI-EEG)が自発的に生成されます。MI-EEG信号には、運動意図期間...

ERD/ERSおよびコヒーレンス分析による認知作業負荷中の異なる脳活性化再編成の研究

不同大脑激活重排在认知负荷期间的研究:ERD/ERS与相干性分析 学术背景 人類の脳は、想像、運動、または認知タスクを実行する際に、その機能活動パターンおよび活性化領域が異なる。このようなパターンの変化はまた、脳の電気活動の変化にも反映される。脳波計(EEG)を使うことで、これらの変化を頭皮上から測定できる。認知タスクは、EEG信号パターンの相対的な変化、即ちイベント関連脱同期化/同期化(ERD/ERS)を引き起こす。本研究は、心算タスクを実行する際の人間の脳の活性化パターンを調査することを目的としており、特にEEG信号の周波数帯域のパワースペクトル密度(PSD)およびコヒーレンス分析を通じてこれらのパターンを明らかにすることを目指している。 研究來源 本論文は、Md. Rayahan Sa...

情動計算のための生理データ: Affect-HRIデータセット

生理データを用いた擬人化サービスロボットとの人間-ロボットインタラクションにおける応用:Affect-HRIデータセット 背景と研究の意義 人間同士または人間とロボットの相互作用において、相互作用の対象は人間の情感状態に影響を与えます。人間とは異なり、ロボットは本質的に共感を示すことができないため、不利な情感反応を和らげることができません。責任感があり共感性の高い人間-ロボットインタラクションシステムを構築するためには、特に擬人化サービスロボットが関わる場合、ロボットの行動が人間の情感にどのように影響するかを理解する必要があります。これを目的として、研究者たちは新たな包括的データセットAffect-HRIを提供しました。これは、人間の情感(即ち、感情と気分)がラベル付けされた生理データを初め...

自然対話中の音声誘発抑制

人と人との交流時に、脳が自己の音声と他人の音声を処理する際に顕著な違いがあることが知られており、これを「音声誘導抑制メカニズム(Speech-Induced Suppression, SIS)」と呼びます。このメカニズムは知覚経路における運動エフェクトの副写本に関与し、「エコー」のような作用をし、内部生成の信号をフィルタリングするのに役立ち、外部刺激との混同を避けます。音声処理分野では、SISは自己発声に対する特定の抑制として表れ、精神病理学、特に統合失調症における聴覚幻覚の研究において重要な意義を持ちます。単一音節の実験はSISを広く研究してきましたが、連続自然対話におけるSISメカニズムの理解はまだ不十分です。 出典紹介 この研究はJoaquin E. Gonzalezらによって行われ、...

MEGおよびEEGの隠れガウス図形スペクトルモデルを用いた振動脳ネットワークの識別

MEGおよびEEGの隠れガウス図形スペクトルモデルを用いた振動脳ネットワークの識別

研究背景と研究目的 神経科学の分野が発展するにつれて、機能ネットワークに関連する間接観察プロセスの識別が重要な研究方向となりました。研究者は電生理信号(例えば脳波EEGや脳磁図MEG)を通じてこれらの機能ネットワークの活動を推定しようとしています。しかし、このプロセスは観測データから潜在的な脳活動を推測する逆問題を伴い、研究に巨大な挑戦をもたらしています。 本稿では、著者らはこの課題に対する新しい方法を提案しています。彼らは従来の方法が機能的接続性を推定する際に顕著な誤差を持つことを指摘しており、それは主に機能ネットワークモデルの不適合によるものです。これらの誤差は機能的接続性の正確性に大きく影響し、脳機能の理解を制限します。この問題を解決するために、著者らはベイズ理論に基づく隠れガウススペ...

創造的過程における学生の芸術的および工学的思考のEEG研究

創造的過程における芸術と工学思考の脳電活動に関する研究 背景と研究動機 創造性は、新奇で価値のあるものを想像する能力として広く認識されています。研究者たちは、成長型思考と固定型思考という2つの創造的思考方法が存在すると発見しました。成長型の創造的思考は、時間と実践によってスキルを向上させることができる一方で、固定型の創造的思考は創造スキルが変えられないと考えられています。教育は創造性の育成において極めて重要な役割を果たし、芸術と工学の分野の学生が創造的なタスクにおいて明確な違いを示すことも研究で明らかになっています。 研究出典 この研究論文「An EEG study on artistic and engineering mindsets in students in creative pr...

新興伝染病対応の再利用可能な薬剤の迅速スクリーニングのための補完ネットワークの開発

新型薬物再定位方法のネットワーク構築と応用研究 背景 COVID-19パンデミックの間、研究者と製薬会社は治療とワクチンの開発に専念しました。薬物再定位は近道として素早く効果的な対応戦略と見なされています。薬物再定位は既に承認された薬物の新たな用途を発見しようとするもので、伝統的な薬物発見の経路に比べて安価で迅速だと考えられています[1–3]。例えば、レムデシビルとデキサメタゾンは再定位に成功した2つの薬物です[4–6]。グローバルなパンデミックが地域的な段階に移行する一方で、ウイルスの拡散は続いています。COVID-19パンデミックは、候補薬物を迅速に発見し、医学や製薬分野の専門家に提供する重要性を深く喚起させました[7]。 生物学的メカニズムの進歩と生物医学知識の収集に伴い、より正確で精...

フェーズベースの脳接続とグラフ理論を使用したADHD早期検出の潜在的バイオマーカー

ADHD 早期検出の潜在的バイオマーカーに関する研究報告:位相ベースの脳機能接続とグラフ理論分析に基づいて 本文は「ADHD 早期検出のための潜在的バイオマーカーに関する研究:位相ベースの脳機能接続とグラフ理論分析を用いて」と題された研究報告である。本研究は Farhad Abedinzadeh Torghabeh、Seyyed Abed Hosseini、および Yeganeh Modaresnia により完了され、Physical and Engineering Sciences in Medicine(2023)第46巻、1447-1465ページに掲載された。本文は2023年9月5日にオンラインで公開された。この記事では、学術的な背景、研究方法、実験結果、および科学的価値が詳述される。...

人間の脳における知識組み立ての神経メカニズムが人工知能アルゴリズムに刺激を与える

人間の脳における知識組み立ての神経メカニズムが人工知能アルゴリズムに刺激を与える

脳科学研究が人工知能アルゴリズムを啓発する:知識組み立ての神経メカニズム 背景の概要 新しい情報が脳に入るとき、人間は「知識組み立て」(knowledge assembly)と呼ばれる過程を通じて、世界についての既存の知識を迅速に変更できます。最近、Nelliらによる研究において、人間の脳における知識組み立ての神経関連が探究されました。研究者たちはこの神経メカニズムに触発され、迅速な知識組み立てを実現し、システムの柔軟性を向上させる人工ニューラルネットワークアルゴリズムを開発しました。この研究は、脳の作業方法を研究することがより良い計算アルゴリズムの発展を促進することを再び証明しました。 研究の出典 この研究論文はXiang Ji、Wentao Jiang、Xiaoru Zhang、Ming...