オブジェクト再識別のためのトランスフォーマー:調査

オブジェクト再識別のためのTransformer: サーベイ 背景と研究の重要性 オブジェクト再識別(Object Re-Identification、以下Re-ID)は、特定のオブジェクトを異なる時間やシーンで識別する重要なコンピュータビジョンタスクです。本分野は、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)をベースとした深層学習技術により大きな進展を遂げました。しかし、視覚Transformerの登場により、Re-ID研究は新たな局面を迎えています。本研究では、Transformerを用いたRe-ID技術を体系的にレビューし、画像/ビデオ、少データ/少アノテーション、多モーダル、特殊な応用シナリオでの利点と課題を分析します。 研...

タンパク質構造予測:課題、進展、そして研究パラダイムのシフト

タンパク質構造予測:課題、進歩、および研究パラダイムの変化 タンパク質構造予測は、生化学、医学、物理学、数学、コンピューターサイエンスなど多分野の研究者を引きつける重要な学際的研究課題です。研究者たちは同じ構造予測問題を解決するために様々な研究パラダイムを採用しています:生化学者と物理学者はタンパク質フォールディングの原理を解明しようとしています;数学者、特に統計学者は通常、与えられた目的配列のタンパク質構造の確率分布を仮定することから始め、最も可能性の高い構造を見つけます;一方、コンピューターサイエンティストはタンパク質構造予測を最適化問題として捉え、最低エネルギーを持つ構造コンフォメーションを見つけるか、予測構造と天然構造の間の差異を最小化しようとします。最近では、深層学習もタンパク質構...

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRI多タスク学習によるグリオーマ分割とIDH遺伝子分類の研究報告 研究背景 グリオーマは中枢神経系で最も一般的な原発性脳腫瘍で、世界保健機関(WHO)2016年分類によると、グリオーマは低悪性度グリオーマ(LGG、グレードIIおよびIII)と高悪性度グリオーマ(HGG、グレードIV)に分類されます。イソクエン酸デヒドロゲナーゼ(Isocitrate Dehydrogenase, IDH)変異の状態はグリオーマにおける最も重要な予後指標の一つです。臨床研究では、IDH変異を持つ低悪性度グリオーマ患者の予後は通常、野生型患者よりも良好であることがわかっています。従来のグリオーマの手動セグメンテーションは時間と労力を要するもので、正確なIDH遺伝子分類と正確なグリオーマ分割は...

トランスフォーマーベースのアプローチによるディープラーニングネットワークと時空間情報を組み合わせた生EEG分類

研究背景及目的 近年では、脳-コンピュータインタフェース(Brain-Computer Interface、BCI)システムが神経工学および神経科学の分野で広く応用され、脳波(Electroencephalogram、EEG)は中枢神経系の異なるニューロン集団の活動を反映するデータツールとして、これらの分野で重要な研究テーマとなっています。しかし、EEG信号は低空間分解能、高時間分解能、低信号対雑音比、および個体差が大きいという特徴があり、信号処理および正確な分類において大きな課題となっています。特に運動想像(Motor Imagery、MI)というEEG-BCIシステムの一般的なパラダイムにおいて、異なるMIタスクのEEG信号を正確に分類することは、BCIシステムの機能回復およびリハビリテ...