データエンジニアリングによるグリオーマ生存分析—調査

脳グリオーマ患者の生存分析研究:データエンジニアリングの力を借りたレビュー 序論 脳グリオーマはグリア細胞に発生する腫瘍であり、全ての原発性脳および中枢神経系腫瘍の26.7%を占めています。腫瘍の異質性の存在により、脳グリオーマ患者の生存分析は臨床管理における重要な課題となっています。過去数十年間にわたり、研究者たちは画像や遺伝情報などのさまざまなタイプのデータを組み合わせた多種多様な生存分析手法を提案してきました。特に近年は、機械学習技術や深層学習の台頭により、伝統的な統計分析に基づく生存分析手法が革新されています。本稿では、診断画像技術やゲノムプラットフォームから得られる予後パラメーター、予後予測に用いる技術、学習および統計分析アルゴリズムをレビューし、現行の生存予測研究において直面する...

個別化された神経膠腫成長予測のためのベイズ推論

ベイズ推論を用いた個別化予測による膠芽腫の成長 序論 膠芽腫(glioblastoma)は最も侵襲性の高い原発性脳腫瘍であり、腫瘍細胞は周囲の組織に高度に侵入します。標準的な医学的イメージング技術によってこれらのびまん性腫瘍境界を正確に識別することは困難であり、そのため臨床介入の効果が低く、予後も不良です。このような課題に対処するために、医学画像を用いて腫瘍の空間的および時空的な発育を信頼性を持って計算し予測することが、各個体に最適な治療計画を立てる際に有益です。 近年、腫瘍成長の生物物理モデルが非侵襲的画像測定データを用いて開発および校正され、将来の腫瘍成長や治療結果を予測することを目指しています。しかし、腫瘍の発展を予測するには2つの主要な課題を解決する必要があります。一つは、モデル予測...

脳腫瘍診断のためのPCFバイオセンサーに埋め込まれた長方形オープンチャネルTiO2-Au-MXeneの数値解析

数値解析埋め込みTiO2-Au-MXeneの矩形オープンチャネルPCFバイオセンサーによる脳腫瘍診断 学術背景と問題提起 近年、コスト効率が高く信頼性の高いバイオセンサーの開発が研究のホットトピックとなっています。これらのセンサーは、微小な濃度の分析物を検出することを目的としており、多様な技術を網羅し、細胞や液体の監視と検出に用いられています。フォトニック結晶(photonic crystals, PHCs)とPHCファイバー(photonic crystal fibers, PCFs)は、そのコンパクトなサイズ、電磁干渉への耐性、少量の分析物で済むこと、構造設計の柔軟性、および統合の容易さなどの利点から、センサー技術のホットな選択肢として急速に注目を浴びています。 特に、表面プラズモン共鳴...

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

世界的に見て、悪性脳腫瘍の中で最も一般的で致命的なのは膠芽腫(Glioblastoma, GBM)です。近年、機械学習技術を通じて術前の単一モダリティまたは多モダリティの画像表現型に基づいてGBM患者の総生存時間(Overall Survival, OS)を予測しようとする研究が続けられています。これらの機械学習方法は予測において一定の進展を遂げましたが、多くの研究では放射線学に基づくOS予測方法に含まれる腫瘍の遺伝子型情報を考慮しておらず、この情報は予後に強い指示作用を持っています。この問題を解決するために、Tang Zhenyu、Xu Yuyun、Jin Lei などの研究者が2020年6月に《IEEE Transactions on Medical Imaging》に「Deep Lea...

インシリコ飽和変異原性によるクローン造血ドライバーミューテーションの同定

引言 健康な造血過程では、一群の造血幹細胞(Hematopoietic Stem Cells、略してHSC)が血液関連のすべての系統に貢献します。しかし、年齢が上がるにつれて、この過程はしばしばクローン性造血(Clonal Hematopoiesis、略してCH)を引き起こし、特定のHSCクローンの拡張により多くの血細胞や血小板が占められます。このクローン拡張現象は、生命過程でHSCが獲得する体細胞変異によって駆動され、高齢者において高度に一般的です。CHに関連する遺伝子変異はHSCに成長の優位性を与え、造血過程で正の選択を受けます(1-13)。近年、多くの研究がCHが血液悪性腫瘍の発症、心血管疾患、全死因死亡率、実体腫瘍、および感染症のリスク増加と関連していることを示しています(2, 7,...

英国バイオバンクにおける自殺未遂の行動および生理的リスク要因の特定

研究背景: 自殺は世界的な公衆衛生の課題であるが、行動的要因と生理的要因と自殺未遂(suicide attempts,SA)との関係には依然として多くの不確実性が存在する。これまでの研究は、うつ病のような精神疾患、絶望感のような人格や心理的特徴、低い社会的支援や生活のストレスといった社会的および家庭の要因など、限られた仮説に集中していた。このような狭い視点は、他のリスク要因を見逃す可能性がある。これらの研究空白を埋めるため、本研究チームは大規模な系統的分析およびメンデルランダム化分析を実施し、イギリス生物銀行データセットでSAに関連する可能性のある行動および生理的リスク要因を特定した。 研究来源: この論文は以下の研究者による著作である:Bei Zhang、Jia You、Edmund T....

単一サンプルの腫瘍サブクローン再構築のクラウドソースベンチマーク

群体リソースに基づく単一サンプル腫瘍サブクローン再構築アルゴリズム 背景紹介 癌の進化過程と腫瘍の遺伝的異質性は、現代腫瘍学研究の重要な分野です。腫瘍は正常細胞から進化し、体細胞変異を獲得することで徐々に発展します。これらの変異は細胞クロマチン構造や内因性及び外因性の誘変圧力の影響を受け、確率的に発生します。特定の変異が細胞に選択的優位性を提供すると、その子孫細胞は局所環境で拡大することができます。長年の蓄積を経て、最終的に多くの癌の特性を持つ細胞集団、すなわちクローンが形成されます。異なる腫瘍細胞亜群(サブクローン)は、ドリフトまたは選択圧力を通じて細胞集団内に出現します。この進化的特徴は臨床上重要であり、遺伝的異質性は予後不良、変異の多さ、耐薬性に関連しています。そのため、腫瘍の進化過程...

マイクロステートと再発定量分析を使用するGRU-CNNモデルによる聴覚注意検出

総説と報告:微状態とリカースクエンティアル分析に基づくGRU-CNNモデルの聴覚注意検出への応用 背景と研究動機 注意力は一種の認知能力として感知過程において重要な役割を果たしており、人間が複雑な環境の中で特定の対象に集中し、他の干渉を無視するのを助ける。本論文は聴覚注意検出(Auditory Attention Detection, AAD)に関する研究であり、複数チャンネルの脳波(EEG)信号を通じて、聴者が目標話者に集中する過程で異なる動態特性を抽出し、競争的な話者が存在する場合でも効果的に聴覚注意を検出することを目指している。 論文の出典と著者情報 本論文はMohammadreza Eskandarinasab、Zahra Raeisi、Reza Ahmadi Lashaki、および...

ディープラーニングモデルによるセマンティック飽和のメカニズムの解明

ディープラーニングモデルによるセマンティック飽和のメカニズムの解明

ディープラーニングモデルが意味飽和メカニズムを解明 意味飽和(semantic satiation)は、ある単語やフレーズが何度も繰り返されることでその意味が失われる現象であり、よく知られた心理学的現象です。しかし、このメカニズムを引き起こす微視的な神経計算の原理は依然として未知です。本稿では、連続結合ニューラルネットワーク(continuous coupled neural network, CCNN)を使用してディープラーニングモデルを構築し、意味飽和のメカニズムを研究し、ニューロンの成分でこのプロセスを正確に記述します。研究結果は、中観的な視点から見ると、意味飽和は自下から上へのプロセスである可能性があり、既存のマクロな心理学研究が意味飽和を自上から下へのプロセスと見なしているのとは異...

ヒト頂縁回における単一ニューロンによる内部言語の表現

《Internal Speech Representation by Single Neurons in Human Supramarginal Gyrus》科学報告 背景紹介 近年、ブレイン・マシン・インターフェース(BMIs, Brain-Machine Interfaces)技術は音声デコード分野で顕著な進展を遂げています。BMIsは脳信号を音声またはオーディオ出力に変換し、病気や損傷のために話す能力を失った人々が再びコミュニケーションできるようにします。しかし、有声音声、試みの音声、模擬音声デコードにおいて重要な進展があったにもかかわらず、内在言語(internal speech)のデコード研究は相対的に希少であり、機能性も低いです。本論文は内在言語デコードの過程における課題を解決す...