高次幾何構造モデリングによる点群の教師なしドメイン適応

高次幾何構造モデリングに基づく点群の教師なし領域適応 研究背景と動機 点群データは3次元空間を表す重要なデータ形式であり、自動運転、リモートセンシングなどの現実世界のシナリオで広く利用されています。点群は正確な幾何情報を捉えることができますが、デバイス間またはシナリオ間で適用される際に、センサーのノイズ、サンプリング方法、環境の影響などによる幾何的な特性が顕著に変化する可能性があります。このような顕著な幾何変化(領域間ギャップ)は、ある領域で訓練されたニューラルネットワークが他の領域での性能を保持するのを困難にしています。この問題は、点群の深層学習手法の実際の応用での普及に制約を与えています。 現在、この問題の効果的な解決策として教師なし領域適応(Unsupervised Domain Ad...

階層的ネガティブサンプリングに基づくグラフ対照学習アプローチによる薬剤-疾患関連予測

階層的負サンプリングに基づくグラフ対比学習を用いた薬物-疾患関連予測の研究 薬物-疾患関連(RDAs)の予測は、疾患治療戦略の解明や薬物の再利用において重要な役割を果たしています。しかし、既存の方法は主に限定されたドメイン特有の知識に依存して薬物と疾患の候補関連を予測しているため、効果が限定されています。また、薬物-疾患関係の未知の情報を単純に負のサンプルとして定義することには固有の欠点があります。これらの課題を克服するため、本研究では階層的な負のサンプリングに基づく新しいグラフ対比モデルであるHSGCL-RDAを提案し、薬物と疾患の潜在的な関連を予測します。 研究背景と研究課題 薬物開発および疾患進行の制御プロセスは長くて高価であり、増え続ける疾患の数とその変異により効果的な薬物の需要が増...

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

医学多組学データ分析における多重先験知識グラフニューラルネットワーク 背景紹介 精密医療は将来の医療保健において重要な分野であり、患者に個別化された治療計画を提供することにより、治療効果を改善しコストを削減します。例えば、乳がん患者の複雑な臨床、病理、および分子特性を考えると、同じ治療が異なる効果を示すことがあります。バイオ医学技術の急速な発展に伴い、多組学データを通じて疾病の特性化が可能になっています。多組学アプローチは単一組学アプローチに比べて、複数のデータ間で一貫性と補完的な情報を捉えることができ、より正確かつ深くモデルを構築することができます。例えば、がんゲノム図譜(The Cancer Genome Atlas, TCGA)は、mRNA 発現、DNA メチル化、およびコピー数変異(...