通过多任务学习接近耦合簇精度的分子电子结构
机器学习助力量子化学:逼近耦合簇精度的分子电子结构预测 学术背景 在物理学、化学和材料科学领域,计算方法是揭示各种物理现象背后机制和加速材料设计的关键工具。然而,量子化学计算(尤其是电子结构计算)通常是计算瓶颈,限制了计算速度和可扩展性。尽管近年来机器学习方法在加速分子动力学模拟和提高精度方面取得显著成功,但现有的机器学习模型大多基于密度泛函理论(DFT)数据库作为训练数据的“真实值”,其预测精度无法超越DFT本身。DFT作为一种平均场理论,其计算通常引入的系统误差比化学精度(1 kcal/mol)大几倍,这限制了基于DFT数据集训练的机器学习模型的整体精度。 相比之下,耦合簇方法(CCSD(T))被认为是量子化学的“金标准”,能够提供各种分子性质的高精度预测。然而,CCSD(T)的计算成本...