SP-DTI: Subpocket-Informed Transformer for Drug–Target Interaction Prediction

Academic Background Drug-Target Interaction (DTI) prediction is a critical step in drug discovery, significantly reducing the cost and time of experimental screening. However, despite the advancements in deep learning that have improved the accuracy of DTI prediction, existing methods still face two major challenges: lack of generalizability and ne...

ABVS Breast Tumour Segmentation via Integrating CNN with Dilated Sampling Self-Attention and Feature Interaction Transformer

ABVS Breast Tumor Segmentation Research Based on CNN and Dilated Sampling Self-Attention Academic Background Breast cancer is the second most common cancer worldwide, and early and accurate detection is crucial for improving patient prognosis and reducing mortality. Although various imaging techniques (such as X-ray mammography, magnetic resonance ...

Deep Reconstruction Framework with Self-Calibration Mechanisms for Accelerated Chemical Exchange Saturation Transfer Imaging

Application of the Deep Reconstruction Framework with Self-Calibration Mechanisms (DEISM) in Accelerated Chemical Exchange Saturation Transfer Imaging Academic Background Chemical Exchange Saturation Transfer (CEST) imaging is a highly sensitive molecular magnetic resonance imaging technique capable of detecting biomolecules associated with various...

SigWavNet: Learning Multiresolution Signal Wavelet Network for Speech Emotion Recognition

Application of Multiresolution Signal Wavelet Network in Speech Emotion Recognition: SigWavNet Academic Background Speech Emotion Recognition (SER) plays a crucial role in human-computer interaction and psychological assessment. It identifies the speaker’s emotional state by analyzing speech signals, with wide applications in emergency call centers...

Leveraging Pharmacovigilance Data to Predict Population-Scale Toxicity Profiles of Checkpoint Inhibitor Immunotherapy

Predicting and Monitoring the Toxicity of Immune Checkpoint Inhibitors: Breakthrough Application of the DysPred Deep Learning Framework Academic Background Immune checkpoint inhibitors (ICIs) represent a major breakthrough in cancer immunotherapy in recent years, enhancing the body’s antitumor immune response by inhibiting immune checkpoint signali...

Deep Learning Algorithms for Breast Cancer Detection in a UK Screening Cohort: As Stand-Alone Readers and Combined with Human Readers

Deep Learning Algorithms in Breast Cancer Screening Academic Background Breast cancer is one of the most common cancers among women worldwide, and early screening is crucial for improving cure rates. Traditional Computer-Aided Detection (CAD) systems have been widely used in mammographic screening, particularly in the United States. However, while ...

Transformer for Object Re-Identification: A Survey

Background and Significance Object re-identification (Re-ID) is an essential task in computer vision aimed at identifying specific objects across different times and scenes. Driven by deep learning, particularly convolutional neural networks (CNNs), this field has made significant strides. However, the emergence of vision transformers has opened ne...

Revealing the Mechanisms of Semantic Satiation with Deep Learning Models

Revealing the Mechanisms of Semantic Satiation with Deep Learning Models

Deep Learning Model Reveals Mechanisms of Semantic Satiation Semantic satiation, the phenomenon where a word or phrase loses its meaning after being repeated many times, is a well-known psychological phenomenon. However, the micro-neural computational principles underlying this mechanism remain unknown. This paper uses a continuous coupled neural n...

EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records

EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records

EHR-HGCN: A Novel Hybrid Heterogeneous Graph Convolutional Network Method for Electronic Health Record Text Classification Academic Background With the rapid development of Natural Language Processing (NLP), text classification has become an important research direction in this field. Text classification not only helps us understand the knowledge b...

A Siamese-Transport Domain Adaptation Framework for 3D MRI Classification of Gliomas and Alzheimer’s Diseases

Classification of 3D MRI Gliomas and Alzheimer’s Disease Based on the Siamese-Transport Domain Adaptation Framework Background In computer-aided diagnosis, 3D magnetic resonance imaging (MRI) screening plays a vital role in the early diagnosis of various brain diseases, effectively preventing the deterioration of the condition. Glioma is a common m...