ゲーム理論的解釈可能性を持つ多モーダル解きほぐされた変分オートエンコーダによる膠芽腫の分類

多模態解凍変分オートエンコーダとゲーム理論解釈性が膠質腫分類における応用 背景紹介 中枢神経系統で膠質腫は最も一般的な原発性脳腫瘍です。細胞活性と侵襲性に応じて、世界保健機関(WHO)はこれをIからIV級に分類しています。IおよびII級を低位膠質腫(LGG)、IIIおよびIV級を高位膠質腫(HGG)と呼びます。臨床実践において、治療決定は通常、腫瘍の異なる級に合わせて個別に調整する必要があります。そのため、正確な膠質腫分類は、治療決定、個別化治療、患者の予後予測にとって非常に重要です。現在、膠質腫分類のゴールドスタンダードは手術生検や組織病理学分析によって行われています。しかし、この方法は侵襲性があり、リアルタイム性を持っていないため、てんかん、感染症、さらには穿刺経路沿いの腫瘍転移によって...

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRIベースのマルチタスク学習によるグリオーマセグメンテーションとIDHジェノタイピング

全自動マルチモーダルMRI多タスク学習によるグリオーマ分割とIDH遺伝子分類の研究報告 研究背景 グリオーマは中枢神経系で最も一般的な原発性脳腫瘍で、世界保健機関(WHO)2016年分類によると、グリオーマは低悪性度グリオーマ(LGG、グレードIIおよびIII)と高悪性度グリオーマ(HGG、グレードIV)に分類されます。イソクエン酸デヒドロゲナーゼ(Isocitrate Dehydrogenase, IDH)変異の状態はグリオーマにおける最も重要な予後指標の一つです。臨床研究では、IDH変異を持つ低悪性度グリオーマ患者の予後は通常、野生型患者よりも良好であることがわかっています。従来のグリオーマの手動セグメンテーションは時間と労力を要するもので、正確なIDH遺伝子分類と正確なグリオーマ分割は...

3D MRIスキャンを使用した神経膠腫のセグメンテーションとグレーディングのための注意誘導付きCNNフレームワーク

注意引导のCNNフレームワークを用いた3D MRIスキャンの膠芽腫の分割と評価研究 膠芽腫は人間にとって最も致命的な脳腫瘍の形式であり、これらの腫瘍の早期診断は効果的な腫瘍治療の重要なステップです。磁気共鳴画像法(MRI)は通常、脳病変の非侵襲的検査を提供します。しかし、MRIスキャンにおける腫瘍の手動検査は多くの時間を要し、エラーが発生しやすいです。そのため、自動診断は膠芽腫の臨床管理および外科的介入において極めて重要な役割を果たしています。本研究では、3D MRIスキャンから非侵襲的に腫瘍を分類するための畳み込み神経ネットワーク(CNN)に基づくフレームワークを提案します。 背景紹介 膠芽腫は一般的かつ致命的な脳腫瘍であり、その侵襲性および悪性度に応じて4段階に分類されます。低グレード腫...

CaNet: 脳膠腫セグメンテーションのためのコンテキストアウェアネットワーク

CaNet: 脳膠腫セグメンテーションのためのコンテキストアウェアネットワーク

脳グリオーマ分割のためのコンテキスト認識ネットワークに関する研究レポート 脳グリオーマは成人における一般的な脳腫瘍であり、健康に対して重大な損害を及ぼし、高い死亡率を持っています。早期診断、手術計画及び術後のフォローアップに充分な証拠を提供するために、多モード磁気共鳴イメージング(MRI)が広く利用されています。本レポートで研究されている目的は、脳グリオーマの自動分割においてコンテキスト情報を組み込むことであり、これは局部的な曖昧さを扱う上で基本的な手がかりを提供しています。 研究背景 以前に行われた研究では、深層ニューラルネットワークに基づく手法が、脳グリオーマ分割において有望な技術を示しました。しかし、これらの方法は腫瘍細胞及びその周辺のコンテキスト情報を組み合わせるための有力な戦略を欠...

説明可能なAIを使用して透過的な機械学習と解釈的洞察で神経膠腫の予測を強化

グリオーマ予後の透明性機械学習と説明可能なAIを用いた洞察の応用 学術的背景 本研究は、患者が特定のタイプの脳腫瘍であるグリオーマに罹患しているかどうかを検出するために、複数の機械学習および深層学習法を使用し、説明可能な人工知能(XAI, Explainable Artificial Intelligence)技術を組み合わせた信頼できる技術を開発することに取り組んでいます。グリオーマ(glioma)はグリア細胞に由来する中枢神経系のがんの一種で、成長が速く健康な脳組織に侵襲する特性を持ちます。一般的な治療方法には手術、放射線療法、化学療法などがあります。患者のデータ、例えば医療記録や遺伝情報を統合することで、機械学習アルゴリズムが個々の患者に対する様々な医療介入の反応を予測できます。 論文...

グループスパース事前知識に基づくグリオーマの形態再構築のための蛍光分子断層撮影

群稀疏先验を基にしたフルオレセンス分子断層撮影によるグリオーマ形態再構築技術の研究報告 一、学術背景と研究動機 フルオレセンス分子断層撮影(Fluorescence Molecular Tomography, FMT)は、生命科学の重要なツールであり、この技術によりフルオレセンス源の位置を非侵襲的な実時間三次元(3D)可視化が可能になる。感度が高く、コストも低いという利点から、FMTは腫瘍研究に広く応用されている。しかし、FMTの再構築過程は複雑で困難である。近年、FMT再構築方法の発展が著しく進んでいるものの、形態再構築は依然として難題である。したがって、本研究の目的はグリオーマ研究におけるFMT形態再構築能力の実現である。 二、論文情報および著者情報 本論文は、IEEE Transact...

データエンジニアリングによるグリオーマ生存分析—調査

脳グリオーマ患者の生存分析研究:データエンジニアリングの力を借りたレビュー 序論 脳グリオーマはグリア細胞に発生する腫瘍であり、全ての原発性脳および中枢神経系腫瘍の26.7%を占めています。腫瘍の異質性の存在により、脳グリオーマ患者の生存分析は臨床管理における重要な課題となっています。過去数十年間にわたり、研究者たちは画像や遺伝情報などのさまざまなタイプのデータを組み合わせた多種多様な生存分析手法を提案してきました。特に近年は、機械学習技術や深層学習の台頭により、伝統的な統計分析に基づく生存分析手法が革新されています。本稿では、診断画像技術やゲノムプラットフォームから得られる予後パラメーター、予後予測に用いる技術、学習および統計分析アルゴリズムをレビューし、現行の生存予測研究において直面する...

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

世界的に見て、悪性脳腫瘍の中で最も一般的で致命的なのは膠芽腫(Glioblastoma, GBM)です。近年、機械学習技術を通じて術前の単一モダリティまたは多モダリティの画像表現型に基づいてGBM患者の総生存時間(Overall Survival, OS)を予測しようとする研究が続けられています。これらの機械学習方法は予測において一定の進展を遂げましたが、多くの研究では放射線学に基づくOS予測方法に含まれる腫瘍の遺伝子型情報を考慮しておらず、この情報は予後に強い指示作用を持っています。この問題を解決するために、Tang Zhenyu、Xu Yuyun、Jin Lei などの研究者が2020年6月に《IEEE Transactions on Medical Imaging》に「Deep Lea...

セントジュードサバイバーシップポータル:小児がん生存者からの大規模な臨床およびゲノムデータセットの共有と分析

セントジュードサバイバーシップポータル:小児がん生存者からの大規模な臨床およびゲノムデータセットの共有と分析

St. Jude Survivorship Portal: 小児癌サバイバーの大規模臨床およびゲノムデータの分析と共有 研究背景 アメリカにおいて、小児癌の5年生存率は1970年代の約60%から今日の85%以上に上昇しました。生存率が著しく向上したにもかかわらず、これらの小児癌サバイバーは癌及びその治療に起因する様々な健康リスクに直面しています。これらのリスクには、早期死亡、器官機能障害、新たな腫瘍、不良な社会経済的結果、心理社会的課題、及び全体的な生活の質の低下が含まれます。これらの問題に対処するため、主要な研究はその潜在的な原因、関連リスク、および最も感受性の高い患者亜群を特定することに焦点を当てています。 これに関連する大規模縦断研究として、St. Jude Lifetime Coho...

インシリコ飽和変異原性によるクローン造血ドライバーミューテーションの同定

引言 健康な造血過程では、一群の造血幹細胞(Hematopoietic Stem Cells、略してHSC)が血液関連のすべての系統に貢献します。しかし、年齢が上がるにつれて、この過程はしばしばクローン性造血(Clonal Hematopoiesis、略してCH)を引き起こし、特定のHSCクローンの拡張により多くの血細胞や血小板が占められます。このクローン拡張現象は、生命過程でHSCが獲得する体細胞変異によって駆動され、高齢者において高度に一般的です。CHに関連する遺伝子変異はHSCに成長の優位性を与え、造血過程で正の選択を受けます(1-13)。近年、多くの研究がCHが血液悪性腫瘍の発症、心血管疾患、全死因死亡率、実体腫瘍、および感染症のリスク増加と関連していることを示しています(2, 7,...