自己监督型の深層学習に基づく拡散テンソルMRIのノイズ除去

自己监督型の深層学習に基づく拡散テンソルMRIのノイズ除去

背景紹介 拡散テンソル磁気共鳴画像法(Diffusion Tensor Magnetic Resonance Imaging, DTI)は、脳組織の微細構造や白質束の可視化に広く用いられている神経画像技術です。しかし、拡散強調画像(Diffusion-Weighted Images, DWI)に含まれるノイズは、DTIデータから派生する微細構造パラメータの精度を低下させるだけでなく、信号雑音比(Signal-to-Noise Ratio, SNR)を向上させるために長い収集時間を必要とします。畳み込み神経ネットワーク(Convolutional Neural Networks, CNNs)に基づく深層学習法は画像のノイズ除去に優れた性能を発揮しますが、通常はCNNの訓練に追加の高信雑音比デー...

DeepDTI:ディープラーニングを用いた高精度6方向拡散テンソルイメージング

DeepDTI:ディープラーニングを用いた高精度6方向拡散テンソルイメージング

DeepDTI:ディープラーニングを用いた高忠実度六方向拡散テンソルイメージングの実現 研究背景と動機 拡散テンソル磁気共鳴イメージング(Diffusion Tensor Imaging, DTI)は、生体内の脳組織の微細構造と構造的接続性をマッピングする上で比類のない優位性を持っています。しかし、従来のDTI技術は角度サンプリングの要求によりスキャン時間が長くなり、通常の臨床実践や大規模研究での応用に制約があります。このボトルネックを克服するために、研究者たちはDeepDTIという新しいDTI処理フレームワークを開発しました。これはデータ駆動の監督ディープラーニングにより、DTIのデータ要求を最小限に抑えることを目的としています。本研究の目的は、DeepDTIを使用してDTIのサンプリング...