EEG解読のための深層学習を用いたユークリッド整列の体系的評価

EEG解読におけるユークリッド整列と深層学習の系統的評価 背景紹介 脳波(EEG)信号は、非侵襲性、携帯性、低コストな収集などの利点から、脳コンピューターインターフェース(BCI)タスクで広く利用されています。しかし、EEG信号には低い信号対雑音比、電極位置の影響を受けやすい、空間分解能が低いなどの欠点があります。深層学習(DL)技術の進歩に伴い、この技術はBCI分野で優れた性能を示し、場合によっては従来の機械学習手法を上回っています。しかし、DLモデルには大量のデータが必要であるという主な障害があります。複数の被験者データを使った転移学習(Transfer Learning、TL)は、データ共有によってDLモデルをより効率的に訓練できます。ユークリッド整列(Euclidean Alignm...

GCTNet: EEG信号に基づく重度抑うつ障害検出のためのグラフ畳み込みトランスフォーマーネットワーク

GCTNet:EEG信号に基づいて重度抑うつ症を検出するグラフ畳み込みTransformerネットワーク 研究背景 重度抑うつ症(Major Depressive Disorder, MDD)は、一般的な精神障害であり、顕著かつ持続的な低気分を特徴とし、全世界で約3億5千万人に影響を与えています。MDDは自殺の主な原因の一つであり、毎年約80万人がこれにより命を落としています。現在のMDDの診断は主に患者の自己報告と臨床医の専門的判断に依存しています。しかし、診断過程の主観性は、異なる医師間での一致性の低さを引き起こし、正確でない診断をもたらす可能性があります。研究によれば、MDDと診断された一般医師の正確率はわずか47.3%に過ぎません。したがって、客観的かつ信頼できる生理指標を探索し、効...

低線量CT再構成のための雑音生成および画像化メカニズムに着想を得た暗黙の正則化学習ネットワーク

低線量CT再構成のための雑音生成および画像化メカニズムに着想を得た暗黙の正則化学習ネットワーク

ノイズ生成とイメージングメカニズムに基づく暗黙の正則化学習ネットワークの低線量CT再構成への応用 低線量コンピュータ断層撮影(Low-Dose Computed Tomography, LDCT)は、放射線リスクを低減しつつ画像品質を維持するための重要なツールとなっています。しかし、X線の線量を減少させるとデータの損失が生じ、初通ボタン(FBP)再構成が悪化して画像品質に影響を及ぼします。この問題に対処するため、研究者たちはノイズやアーチファクトを減少させつつ、高品質な画像を取得するための高度なアルゴリズムを開発し続けています。本報告では、高性能なLDCT再構成を実現するための新しい研究成果を詳細に紹介します。 背景紹介 X線CTイメージングでは、放射線量を減少させることが常に目標とされてお...

相互強化のクロスモダリティ画像生成および登録を介した、不整合のあるPATおよびMRI画像の無監督融合

相互補完的クロスモーダル画像生成と登録方法による未アラインズPATとMRIの教師なし融合 背景と研究目的 近年、光音響トモグラフィー(Photoacoustic Tomography, PAT)と磁気共鳴イメージング(Magnetic Resonance Imaging, MRI)が最先端の生物医学イメージング技術として臨床前研究で広く応用されています。PATは高い光学コントラストと深部イメージングを提供できる一方、軟組織コントラストが低い欠点があります。これに対し、MRIは優れた軟組織イメージング能力を持ちますが、時間分解能が低いです。多モーダルデータ融合に関して一定の進展は見られましたが、画像の未アラインと空間ゆがみの問題のため、PATとMRIの画像融合はなおも難題として残っています。 ...

多施設共同作業による心音異常検出: 連邦学習フレームワークの導入

多施設共同作業による心音異常検出: 連邦学習フレームワークの導入

利用連邦学習で心音異常を検出する多機関協力研究 学術的背景 心血管疾患(Cardiovascular diseases, CVDs)は主要な死因の一つとなっており、特に高齢者において心血管の健康問題が社会の注目を集めています。早期のスクリーニング、診断および予後管理は入院を防ぐために非常に重要です。心音信号は豊富な生理学的および病理学的情報を含んでおり、心音を用いたCVDsの早期診断は取得が容易で、広く存在し、非侵襲性といった利点があります。近年、人工知能(AI)が心音補助診断に応用され、広く注目を集めています。自動心音聴診技術は心臓の状態を迅速かつ効果的に評価するのに役立ちます。しかし、現存する研究はデータの安全性およびプライバシー問題を無視しており、特に多機関がデータを共同使用する場合に...

言語間で共有された皮質発語表象によって駆動されるバイリンガル音声神経補綴

大脳皮質発話表現に基づくバイリンガル音声神経義肢 背景 神経義肢の発展の過程では、脳活動から言語をデコードする研究が単一言語のデコードに集中してきました。そのため、バイリンガルによる言語生成が異なる言語の独自または共有された皮質活動にどの程度依存するかはまだ不明です。本研究は、電皮質図(electrocorticography, ECoG)と深層学習および統計的自然言語モデルを組み合わせ、西スペイン語-英語バイリンガル患者の発話運動皮質活動を記録およびデコードし、二つの言語の文に変換します。この研究は、目標言語を手動で指定することなく発話デコードを実現するという実際の応用問題を解決することを目指しています。 言語失声症 (anarthria)、すなわち明瞭な発話能力の喪失は、脳卒中や筋萎縮性...

加速度計データの自己監督学習が睡眠と死亡率の関係に新しい洞察を与える

加速度計データの自己監督学習が睡眠と死亡率の関係に新しい洞察を与える

自己監督学習による手首加速度計データが明かす睡眠と死亡率の新たな関連性 現代社会において、睡眠は生命活動に欠かせない基本的な行為であり、その重要性は言うまでもありません。睡眠/覚醒状態や異なる睡眠段階を正確に測定および分類することは、睡眠障害の診断や消費者向けデバイスが提供する運動および心理的健康データの解釈において非常に重要です。しかし、現在のポリソムノグラフィー(Polysomnography, PSG)以外の睡眠分類技術は主にヒューリスティックな方法に依存しており、これらの方法は比較的小規模なサンプル集団で開発されるため、ある程度の限界があります。従って、本研究の目標は手首に装着する加速度計を用いて睡眠段階分類の正確性を確認し、睡眠時間と効率が死亡率とどのように関連しているかを調査する...

人口レベルでの心血管診断のための心電図に基づく機械学習アルゴリズムの開発と検証

心電図に基づく大規模な心血管診断機械学習アルゴリズムの開発と検証 序論 心血管疾患(Cardiovascular diseases, CV)は、世界中で病気の負担の主な原因であり、早期診断と介入が病気の合併症、医療利用率、および費用の削減において重要です。伝統的な心電図(Electrocardiogram, ECG)は、低コストで便利な診断ツールとして、心血管疾患の検出に広く使用されています。しかし、現在のECG解釈技術(人工およびコンピュータアルゴリズムを含む)は、高次の信号相互作用および「隠れた」臨床関連パターンの識別に制限があります。人工知能(Artificial Intelligence, AI)、特に深層学習(Deep Learning, DL)の出現は、ECG信号における「隠れた...

深層学習敗血症予測モデルがケアの質と生存率に与える影響

深層学習敗血症予測モデルが看護の質と患者の生存状況に与える影響 研究背景 敗血症は感染によって引き起こされる全身性炎症反応で、毎年約4800万人が影響を受け、そのうち約1100万人が死亡しています。敗血症の多様性により、早期の識別は非常に困難です。早期介入には液体復旧、抗生物質管理、感染源の制御などの治療が含まれ、疾患初期段階での効果は顕著です。したがって、予測分析を通じて敗血症の早期検出を向上させることは重要です。 研究の出典 この研究は、Aaron Boussina、Supreeth P. Shashikumar、Atul Malhotra、Robert L. Owens、Robert El-Kareh、Christopher A. Longhurst、Kimberly Quintero...

深層学習による拡散モデルの最適化

深層学習による拡散モデルの最適化

Dimond: 深層学習による拡散モデルの最適化に関する研究 学術的背景 脳科学および臨床応用において、拡散磁気共鳴イメージング(Diffusion Magnetic Resonance Imaging, dMRI)は、非侵襲的に脳組織の微細構造や神経連結性を描くための重要なツールです。しかし、拡散信号モデルのパラメーターを正確に推定する計算コストは高く、画像ノイズの影響を受けやすいです。既存の多くの深層学習に基づく教師あり推定法は、効率と性能の向上の可能性を示していますが、これらの方法は通常追加のトレーニングデータを必要とし、汎化性が不足しているという問題があります。 論文の出典 この研究はZihan Li、Ziyu Li、Berkin Bilgic、Hong-Hsi Lee、Kui Yi...