基于负面确定性信息的多重实例学习用于弱监督目标检测与分割

基于负面确定性信息的多重实例学习用于弱监督目标检测与分割

Negative Deterministic Information-Based Multiple Instance Learning for Weakly Supervised Object Detection and Segmentation 背景介绍 在过去的十年中,计算机视觉领域取得了显著进展,特别是在对象检测(Object Detection)和语义分割(Semantic Segmentation)方面。然而,大多数设计的算法和模型都严重依赖于精确的标注数据,这在实际应用中耗费大量人力和时间。弱监督学习(Weakly Supervised Learning,WSL)因其仅需粗粒度的标注数据(如图像级标注)解决了这一问题。在此背景下,弱监督对象检测(Weakly Supervised...

基于信息感知的Transformer展开网络促进高光谱和多光谱图像融合

基于信息感知的Transformer展开网络促进高光谱和多光谱图像融合

基于信息感知的Transformer展开网络促进高光谱和多光谱图像融合 背景介绍 高光谱图像(Hyperspectral Image, HSI)由于其包含多个波段的光谱信息,在材料识别、图像分类、目标检测和环境监测等遥感应用中发挥着重要作用。然而,由于传感器硬件的限制,实际的成像过程中存在空间分辨率和光谱分辨率之间的权衡问题。具体来说,成像传感器只能提供丰富光谱信息的图像(低分辨率的HSI,LR-HSI),或者是高空间分辨率但光谱信息较少的图像(高分辨率的多光谱图像,HR-MSI)。为了获得高分辨率的HSI(HR-HSI),研究者们提出了将LR-HSI和HR-MSI融合的方法,称为MSI-HSI融合。MSI-HSI融合在遥感图像处理中引起了广泛关注。 论文来源 这篇论文《Advancing ...

基于图神经网络的图优化问题求解框架

基于图神经网络的图优化问题求解框架

基于图神经网络的图优化问题求解框架 背景及研究动机 在解决约束满足问题(CSPs)和组合优化问题(COPs)时,回溯法与分支启发式结合是一种常见的方法。尽管为特定问题设计的分支启发式理论上是高效的,但其复杂性和实施难度使实践应用受限。反之,通用的分支启发式尽管适用范围广,但通常表现出次优性能。本文作者提出了一个新的求解框架,通过在分支启发式中引入香农熵(Shannon Entropy),在通用性和特定性之间找到平衡。具体地,利用图神经网络(GNN)模型从概率方法中训练得出的损失函数学习这些概率分布,并将其应用于两个NP-hard问题:最小支配团问题(Minimum Dominating Clique Problem)和边团覆盖问题(Edge Clique Cover Problem)。 作者...

通过替代双教师自调教学实现弱监督语义图像分割

通过替代双教师自调教学实现弱监督语义图像分割

通过替代双教师自调教学实现弱监督语义图像分割 背景介绍 随着计算机视觉领域的不断发展,语义分割成为了其中一个重要而活跃的研究方向。传统的语义分割方法依赖手工标记的像素级标签,然而获取这些精确标注通常需要大量的人力和时间成本。为了解决这一问题,近年来提出了弱监督语义分割(Weakly Supervised Semantic Segmentation,WSSS),其目标是在最小化人工标注的前提下,利用弱标注信息(如图像标签、边框、涂鸦等)实现高效的语义分割。 本文研究的是基于图像级标签的弱监督语义分割方法,这是所有 WSSS 类别中最具挑战性的任务。当前方法主要依赖于图像分类模型生成伪分割掩膜(Pseudo Segmentation Masks,PSMs),但这些模型特征主要用于分类任务,导致伪...

考虑环境不确定性的稳健多目标强化学习

背景介绍 近年来,强化学习(Reinforcement Learning, RL)在解决各种复杂任务方面展示了其有效性。然而,许多现实世界中的决策和控制问题涉及多个相互冲突的目标。这些目标的相对重要性(偏好)在不同情景下需要权衡。尽管帕累托最优解(Pareto optimal)的解决方案被认为是理想的,但环境不确定性(例如,环境变化或观察噪声)可能会导致代理采取次优策略。 针对上述问题,Xiangkun He、Jianye Hao等人发表了一篇题为《Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties》的论文,旨在研究一种新的多目标优化范式,提出了在考虑环境不确定性的情况下的健...

GMConv:实现对神经网络卷积核有效感受野的调节

GMConv:实现对神经网络卷积核有效感受野的调节 前言 卷积神经网络(Convolutional Neural Networks,简称CNNs)通过卷积核的使用在计算机视觉任务上取得了显著的成功,包括图像分类、目标检测等。然而,近年来视觉转换器(Vision Transformers,简称ViTs)的出现逐渐受到关注,因为它们在视觉识别任务中表现优异,有时甚至超越了CNNs。尽管如此,改善CNNs的努力从未止步,许多研究工作致力于设计新的CNN架构,特别是大核卷积CNNs在准确性等方面展现了与最先进的ViTs相媲美的表现。 本文研究的重点在于CNN中的有效感受野(Effective Receptive Fields,简称ERFs),ERF表示特定输入像素对输出像素的贡献。研究发现ERFs通...

由大脑皮质发音表征驱动的双语语音神经假体

由大脑皮质发音表征驱动的双语语音神经假体 背景 在神经假体的发展过程中,从大脑活动解码语言的研究一直集中在单一语言的解码上。因此,双语言语产生依赖于不同语言的独特或共享皮层活动的程度仍不清楚。当前研究通过电皮层图(electrocorticography, ECoG)结合深度学习和统计自然语言模型来记录和解码一名西班牙语-英语双语患者的言语运动皮层活动,并将其转化为两种语言的句子。该研究旨在解决双语解码的实际应用问题,尤其是在不需要手动指定目标语言的情况下,实现言语解码。 言语丧失症(anarthria),即失去清晰发音的能力,是中风和肌萎缩侧索硬化症等神经疾病的严重症状之一。目前,侵入性言语脑-计算机接口(BCI)正在被开发,以通过解码皮层活动恢复患者的自然沟通能力。然而,现有的言语BCI...

StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习加速度计数据揭示睡眠与死亡率关联的新见解

自监督学习手腕加速度计数据揭示睡眠与死亡率关联的新见解 在现代社会中,睡眠作为生命必需的基础活动,其重要性不言而喻。通过准确测量和分类睡眠/清醒状态以及不同的睡眠阶段,在临床研究中对睡眠障碍的诊断以及解读消费者设备所提供的运动和心理健康数据都是至关重要的。然而现有的非多导睡眠图(Polysomnography, PSG)睡眠分类技术主要依赖于启发式方法,这些方法常常是在相对较小的样本人群中开发的,存在一定的局限性。因此,本研究的目标是通过腕戴加速度计确定睡眠阶段分类的准确性,并探讨睡眠时长和效率与死亡率之间的关联。 研究背景 由Hang Yuan及其团队(包括Tatiana Plekhanova, Rosemary Walmsley, Amy C. Reynolds, Kathleen J....

基于心电图的机器学习算法在全人群水平进行心血管疾病的诊断和验证

基于心电图的大规模心血管诊断机器学习算法的开发与验证 引言 心血管疾病(Cardiovascular diseases,CV)一直是全球范围内疾病负担的主要来源,早期诊断和干预对降低疾病并发症、医疗使用率和费用至关重要。传统的心电图(Electrocardiogram,ECG)作为一种低成本且便捷的诊断工具,广泛应用于心血管疾病的检测。然而,现有的ECG解释技术(包括人工和计算机算法)在识别高层次信号互动及“隐藏”的临床相关模式方面存在局限。人工智能(Artificial Intelligence,AI)尤其是深度学习(Deep Learning,DL)的出现,提供了识别ECG信号中“隐藏”模式并同时评估多种心血管疾病的复杂互动关系的全新契机。本研究正是基于这一背景展开。 论文来源与作者 本...