基于丘脑下核和皮层活动区分帕金森病的静止震颤与自愿手部运动

帕金森病(Parkinson’s disease, PD)是一种常见的神经退行性疾病,其主要症状包括静止性震颤、运动迟缓和肌强直。深部脑刺激(Deep Brain Stimulation, DBS)已被广泛用于治疗帕金森病的运动症状(Krauss et al., 2021)。然而,DBS治疗也存在显著的副作用,其中大部分是由刺激扩展到DBS目标结构周围的区域导致的(Koeglsperger et al., 2019)。为减少这种副作用,研究人员提出了一种适应性深部脑刺激(adaptive DBS, aDBS)方案,通过实时监控病人的当前运动状态来调整DBS的强度和时机(Little et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser et ...

基于卷积神经网络的耐药癫痫早期预测

研究背景及研究目的 癫痫是一种自发性且严重的神经系统疾病,表现为反复发作,全球有大约5000万人受其影响[1]。尽管近年来抗癫痫药物(ASM)的发展有所进步,药物难治性癫痫(Drug-Resistant Epilepsy,DRE)仍影响着20%到30%的癫痫患者[1-3]。DRE患者不仅面临巨大的经济、社会和心理负担,但需长时间的药物试验才能确诊。早期识别高风险患者,可以为施行如癫痫手术、神经调控或生酮饮食等治疗方式提供更早的干预。 以往的研究已指出DRE的风险因素包括:早期发病、高频率发作、脑电图(EEG)异常、神经缺陷、认知障碍、创伤史和颅内结构病变等[5-9]。然而,对于新诊断的癫痫患者,这些因素的重要性尚不明确,因此需要综合工具来早期识别高风险患者。 脑电图在癫痫领域扮演着不可或缺的...

基于改进的集合经验模态分解的EEG脑功能网络用于焦虑分析和检测

基于改进的集合经验模态分解的脑功能网络用于焦虑分析和检测 学术背景及研究目的 随着现代生活压力的增加,焦虑症(Anxiety)作为一种常见神经系统疾病,正日益成为全球公共卫生领域亟待解决的问题。焦虑症不仅表现在精神障碍上,还涉及注意力、记忆和学习等认知过程的异常表现。COVID-19疫情的爆发进一步增加了焦虑症的患病率。据统计,焦虑症在12个月内的发病率为男性4.80%,女性5.20%。然而,焦虑的病因至今尚未明确,且自愈的概率较低。这些复杂性和不确定性使得早期检测和干预变得尤为重要。然而,传统的焦虑检测方法依赖于面对面访谈和自我评估,不仅费时费力,还受到医生专业经验和患者自我评估的主观因素影响。因此,有必要探索一种客观且准确的焦虑分析和检测方法。 在众多生理信号中,脑电图(EEG)因其高时...

EEG微状态在预测奥卡西平治疗新诊断局灶性癫痫患者疗效中的作用

EEG微状态在预测奥卡西平治疗新诊断局灶性癫痫患者疗效中的作用

EEG 微状态在预测新诊断局灶性癫痫患者奥卡西平治疗效果中的作用 引言 背景 局灶性癫痫(focal epilepsy)是最常见的癫痫类型,占所有癫痫病例的约60%。根据不同的癫痫类型,抗癫痫药物的选择也会有所不同。在局灶性癫痫的治疗中,奥卡西平(oxcarbazepine,简称OXC)被广泛应用。然而,奥卡西平能够使约65%的患者实现无癫痫发作,但仍有相当部分患者未能获得良好的治疗效果。电生理监测技术,如脑电图(electroencephalography,EEG),在癫痫的诊断和管理中具有重要作用。 研究目的 微状态(microstate)是一种反映大脑电活动的时-空特征的脑电图模式。以往的研究显示抗癫痫药物可以影响大脑的EEG信号,但对奥卡西平的研究仍然有限。同时,研究显示短暂状态可能...

多级特征探索与融合网络用于MRI中IDH状态的预测研究

多级特征探索与融合网络用于MRI中IDH状态的预测研究 研究背景 胶质瘤是成年人中最常见的恶性原发性脑肿瘤。根据2021年世界卫生组织(WHO)对肿瘤的分类,基因型在肿瘤亚型划分中具有重要意义,尤其是异柠檬酸脱氢酶(IDH)基因型在诊断胶质瘤时极为重要。临床研究表明,携带IDH突变的胶质瘤通过特定的表观遗传变异特征驱动,影响酶活性、细胞代谢和生物特性;相较于携带IDH野生型的胶质瘤,携带IDH突变的胶质瘤对替莫唑胺更敏感,预后更好。目前,IDH状态的确定主要依赖于在侵入性手术后对组织标本进行基因测序或免疫组织化学分析。然而,侵入性操作可能延误最终治疗决策,甚至导致肿瘤转移。因此,迫切需要通过非侵入性的方法在术前预测IDH状态(IDH prediction),以便为胶质瘤患者制定适当的治疗方案...

基于正则化流的动态对比增强磁共振成像药代动力学参数分布估计

在现代医学诊断和临床研究中,动态对比增强磁共振成像(Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI)技术提供了有关组织病理学的重要信息。通过拟合轨迹动力学(Tracer-Kinetic, TK)模型,可以从时间序列MRI信号中提取药代动力学(Pharmacokinetic, PK)参数。然而,这些估计的PK参数受到多种不可避免的变异来源,如信噪比(Signal-to-Noise Ratio, SNR)、本底T1时间、起始时间、动脉输入功能(Arterial Input Function, AIF)和拟合算法等的影响。这些因素导致了PK参数估计的不确定性。因此,估计这些PK参数的后验分布将有助于同时量化PK参数的值及其...

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类

基于Siamese-Transport域适应框架的3D MRI胶质瘤和阿尔茨海默病分类 研究背景 在计算机辅助诊断中,3D磁共振成像(MRI)筛查对于早期诊断各类脑部疾病具有重要作用,可以有效防止病情恶化。胶质瘤是一种常见的恶性脑肿瘤,其治疗方案因肿瘤级别的不同而有所不同。因此,准确高效的3D MRI分类在医学影像分析中至关重要。然而,传统的深度学习模型在应用于临床获得的无标签数据时,表现会严重退化,主要原因是域间不一致性,如不同设备类型和数据获取参数的差异。现有的方法主要集中在减少域间差异,但忽略了语义特征和域信息的纠缠。 论文来源 本文由Shandong University的Luyue Yu,Ju Liu,Qiang Wu,Jing Wang和Aixi Qu等人撰写,发表在2024年1...

DeepSleepNet: 基于原始单通道EEG的自动睡眠分期模型

深度睡眠网络:基于单通道EEG的自动睡眠阶段评分模型 背景介绍 睡眠对于人体健康具有重要影响,监测人们的睡眠质量在医学研究和实践中至关重要。通常,睡眠专家通过分析多种生理信号(如脑电图 (EEG)、眼动电图 (EOG)、肌电图 (EMG) 和心电图 (ECG))进行睡眠阶段评分。这些信号被称为多导睡眠图 (Polysomnogram, PSG),经分类后用于确定个体的睡眠状态。然而,这种手动方法耗时且费力,需要专家持续数夜对多个传感器进行记录并分析。 基于多信号(如EEG、EOG和EMG)或单信号EEG的自动睡眠阶段评分方法已得到广泛研究。然而,大多数现有方法依赖于手工特征提取,这通常根据数据集的特性进行设计,无法推广到具有异质性的更大人群中。此外,较少方法考虑了用于识别睡眠阶段转换规则的时...

沉浸式虚拟现实在中风幸存者认知康复中的应用

沉浸式虚拟现实在中风幸存者认知康复中的应用

近年来,虚拟现实技术(Virtual Reality, VR)逐渐变得更加普及,其相关硬件设备的价格也更加亲民。例如,现在市面上的头戴式显示器(Head Mounted Displays, HMDs)不仅提供高分辨率的显示,还具有精准的头部和手持控制器的跟踪功能。这些技术最初多用于娱乐行业,但越来越多的应用领域开始使用这项技术开展严肃游戏(Serious Games),特别是在创伤性事件后的康复领域,其中包括中风患者。 背景与目的 中风是指脑部血液供应被切断或脑内及脑周围出血导致脑细胞损伤的情况。根据受损脑区的不同,中风可能会引发不同的症状,例如一侧身体的无力(半侧麻痹)、视觉障碍以及失语症(Aphasia)等。值得注意的是,中风后认知功能障碍(Post-Stroke Cognitive I...

利用可解释人工智能进行脑肿瘤检测和分类的视觉Transformer、集成模型以及迁移学习

由于脑肿瘤的高发病率和致命性,快速且准确地检测和分类脑肿瘤变得尤为重要。脑肿瘤包括恶性和非恶性两种类型,其异常生长会对大脑造成长期损害。磁共振成像(MRI)是一种常用的脑肿瘤检测方法。然而,依赖于专家手工分析 MRI 影像存在结果不一致的风险,同时仅仅识别肿瘤是不够的,快速确定肿瘤类型以尽早开始治疗同样重要。 为了提高肿瘤检测的速度、可靠性和公正性,本研究探索了多种深度学习(Deep Learning, DL)架构,包括 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception,并提出了基于最佳三种传递学习(Transfer Learning, TL)模型的新模型 IVX16。本文的多类分类模型旨在解决当前主要集中在二分类问题...