Efficient Tensor Decomposition-Based Filter Pruning

Background Introduction Network Pruning is a crucial technique for designing efficient Convolutional Neural Network (CNN) models. By reducing memory footprint and computational demands, while maintaining or improving overall performance, it makes deploying CNNs on resource-constrained devices (such as mobile phones or embedded systems) feasible. Th...

A Robust Multi-Scale Feature Extraction Framework with Dual Memory Module for Multivariate Time Series Anomaly Detection

A Robust Multi-Scale Feature Extraction Framework with Dual Memory Module for Multivariate Time Series Anomaly Detection

With the rapid development of deep learning technology, the importance of data mining and artificial intelligence training techniques in practical applications has become increasingly prominent. Especially in the field of multivariate time series anomaly detection, existing methods, though excellent, still face significant issues when dealing with ...

Active Dynamic Weighting for Multi-Domain Adaptation

Background Introduction Multi-source Unsupervised Domain Adaptation (MUDA) aims to transfer knowledge from multiple labeled source domains to an unlabeled target domain. However, existing methods often merely seek to blend distributions between different domains or combine multiple single-source models in the decision process through weighted fusio...

Sliding Mode Control for Uncertain Fractional-Order Reaction-Diffusion Memristor Neural Networks with Time Delays

Application of Sliding Mode Control in Uncertain Fractional-Order Reaction-Diffusion Memristor Neural Networks In recent years, as neural networks have been widely applied in various fields, the research on their control and stability has gained increasing attention. Fractional-order (FO) memristor neural networks (MNNs), due to their ability to si...

DualFluidNet: An Attention-Based Dual-Pipeline Network for Fluid Simulation

Background and Motivation Understanding fluid motion is crucial for comprehension of our environment and our interactions with it in the field of physics. However, traditional fluid simulation methods face limitations in practical applications due to high computational demands. In recent years, physics-driven neural networks have emerged as a promi...

Distillation of Multi-Class Cervical Lesion Cell Detection via Synthesis-Aided Pre-Training and Patch-Level Feature Alignment

Distillation of Multi-Class Cervical Lesion Cell Detection via Synthesis-Aided Pre-Training and Patch-Level Feature Alignment

Distillation of Multi-Class Cervical Lesion Cell Detection via Synthesis-Aided Pre-Training and Patch-Level Feature Alignment Background and Research Significance Cervical cancer is a disease that seriously threatens the life and health of women. According to data from the International Agency for Research on Cancer (IARC), there were approximately...

Sequential Safe Static and Dynamic Screening Rule for Accelerating Support Tensor Machine

With the continuous advancement of data acquisition technology, obtaining large amounts of high-dimensional data containing multiple features has become very easy, such as images and vision data. However, traditional machine learning methods, especially those based on vectors and matrices, face challenges such as the curse of dimensionality, increa...

Dynamics of Heterogeneous Hopfield Neural Network with Adaptive Activation Function Based on Memristor

Study of Heterogeneous Hopfield Neural Networks: Dynamic Behavior Analysis Combining Adaptive Activation Functions and Memristors This study investigates the impact of nonlinear factors on the dynamic behavior of neural networks. Specifically, activation functions and memristors are commonly used as nonlinear factors to construct chaotic systems an...

Salient Object Detection in Low-Light RGB-T Scene via Spatial-Frequency Cues Mining

Salient Object Detection in Low-Light RGB-T Scene via Spatial-Frequency Cues Mining

Salient Object Detection in Low-Light RGB-T Scenarios by Mining Spatial-Frequency Cues Salient Object Detection (SOD) holds a significant position in the field of computer vision. Its main task is to identify the most visually attractive regions or objects in an image. Although SOD models have made certain progress in normal lighting environments o...

A Grid Fault Diagnosis Framework Based on Adaptive Integrated Decomposition and Cross-Modal Attention Fusion

A Grid Fault Diagnosis Framework Based on Adaptive Integrated Decomposition and Cross-Modal Attention Fusion Research Background With the continuous expansion and increasing complexity of modern power systems, the stable operation of the grid faces growing challenges. Grid faults can occur due to natural disasters, equipment failures, and local gri...