3D生成敵対ネットワークにおけるワンショット生成ドメイン適応

One-shot Generative Domain Adaptation in 3D GANs 近年、生成対抗ネットワーク(Generative Adversarial Networks, GANs)は、画像生成分野で顕著な進歩を遂げました。従来の2D生成モデルは、多くのタスクで極めて高い能力を発揮しています。しかし、この技術を3次元(3D-aware image generation)の分野に拡張し、2D画像を生成しながら3D構造を同時に学習することは、依然として多くの課題に直面しています。本稿は、International Journal of Computer Vision に掲載された、Ziqiang Li、Yi Wu、Chaoyue Wangらの研究「One-shot Gener...

CNNにおける帰属マップの信頼性評価:摂動ベースのアプローチ

深層学習の解釈可能性研究:摂動に基づく帰属マップ評価手法 背景と研究動機 深層学習モデルは多くのタスクで顕著な成功を収めていますが、これらのモデルの解釈可能性と透明性への関心が高まっています。特に、モデルの高精度な予測と同時に、その意思決定プロセスを人間が直感的に理解できるようにする能力が不足しています。この欠如は、多くの実世界のアプリケーションにおけるモデルの採用を制限しています。 コンピュータビジョン分野では、帰属法(Attribution Methods)が神経ネットワークの解釈可能性研究に広く利用されています。これらの方法は、入力画像中のどの領域がモデルの意思決定に最も寄与しているかを示す帰属マップ(Attribution Maps、AMs)を生成します。しかし、帰属マップの定性的性...

画像分類のためのクロススケール共起局所二値パターン

クロススケール共起局所バイナリパターンを用いた画像分類法の研究 画像分類技術はコンピュータビジョン分野で重要な位置を占めており、画像特徴抽出はこの分野の核心的研究対象です。近年、局所バイナリパターン(Local Binary Pattern, LBP)は、その効率性と優れた記述能力により、テクスチャ分類や顔認識などの視覚タスクで広く利用されています。しかし、従来のLBP手法は幾何変換(回転やスケーリング)や画像ノイズに対して制約があり、その記述能力が劣化しやすいという課題がありました。これらの課題に対処するため、重慶郵電大学の肖斌らの研究チームは、学術誌「International Journal of Computer Vision」に「CS-COLBP: Cross-Scale Co-O...

StyleGANを用いた画像編集のための残差変形

GAN反転と画像編集の新手法:StyleGANを用いたWarping the Residualsによる画像編集 背景と研究課題 生成的敵対ネットワーク(Generative Adversarial Networks, GAN)は、画像生成分野で著しい進展を遂げ、高品質な画像の生成および編集を可能にしました。特に、StyleGANモデルは、その意味的に解釈可能な潜在空間構造を活用し、従来の画像翻訳手法を超える編集能力を示しています。しかし、GANの実用化において直面する主要な課題は、実画像を編集する際に、画像をGANの潜在空間(GAN反転)に正確に投影し、入力画像を高忠実度で再構築しつつ、高品質な編集を実現することです。 既存の手法では、低ビットレートの潜在空間(例:StyleGANの$W^+...

オブジェクト再識別のためのトランスフォーマー:調査

オブジェクト再識別のためのTransformer: サーベイ 背景と研究の重要性 オブジェクト再識別(Object Re-Identification、以下Re-ID)は、特定のオブジェクトを異なる時間やシーンで識別する重要なコンピュータビジョンタスクです。本分野は、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)をベースとした深層学習技術により大きな進展を遂げました。しかし、視覚Transformerの登場により、Re-ID研究は新たな局面を迎えています。本研究では、Transformerを用いたRe-ID技術を体系的にレビューし、画像/ビデオ、少データ/少アノテーション、多モーダル、特殊な応用シナリオでの利点と課題を分析します。 研...

DataLadを用いた研究データ管理の教育:数年にわたる複数分野の取り組み

科学研究データ管理教育の多年にわたる多分野の取り組み 研究背景 現代神経科学の発展に伴い、研究データ管理(Research Data Management, RDM)は科学者にとって不可欠なスキルとなっています。しかし、研究データ管理の重要性にもかかわらず、これらの技術スキルは分野特化の大学院教育においてしばしば無視されがちです。そのため、ますます多くのコミュニティは、組織されたトレーニングの機会や自己学習材料を提供し、初期の研究者がこの知識とスキルを習得するのを支援しています。 マサチューセッツ工科大学(MIT)の「the missing semester of your cs education」は、この教育不足の一例です。さらに、現代のコンピュータとアプリケーションの高可用性は、ユーザ...

直接変調されたワット級フォトニッククリスタル面発光レーザーによる高速高出力自由空間光通信

直接変調されたワット級フォトニッククリスタル面発光レーザーによる高速高出力自由空間光通信

高速大功率自由空间光通信:瓦特级光子晶体表面发射激光器の直接変調 背景紹介 半導体レーザーは、光通信の重要な光源として、小型、低コスト、長寿命、高効率などの特徴から広く応用されています。例えば、垂直共振器面発光レーザー(VCSELs)は、その低消費電力と広帯域直接変調能力のため、データセンターの短距離光インターコネクションに適しています。一方、分布帰還(DFB)レーザーはその単一モード動作特性により、長距離光ファイバ通信で広く用いられています。近年、半導体レーザーを利用した自由空間光通信(FSO)が長距離で高速に伝送でき、光ファイバを必要としないため、注目を集めています。FSO技術は、5Gと未来の6G通信におけるバックホールおよびフロントホールネットワーク、衛星間通信、深宇宙通信などに潜在的...

光周波数コムとプログラム可能な光メモリを用いたハイパースペクトル記憶計算

ハイパースペクトルストレージの内計算と光周波数コームおよびプログラム可能な光ストレージの応用 序論 近年、機械学習の飛躍的進展によって、医療、金融、小売、車両製造業など多くの業界で革命的な発展が促進されています。これらの変革は、広範囲にわたる行列-ベクトル積(mvm)の需要を急増させ、大規模最適化や深層学習アルゴリズムにおいて極めて重要です。しかし、この増大する計算需要は、記憶装置と処理ユニットを分離する従来のフォン・ノイマン型デジタル電子計算機のアーキテクチャに挑戦を与え、「フォン・ノイマンボトルネック」として知られる、記憶装置とプロセッサ間のデータ転送速度の制限によって全体のシステム性能が制約されています。この性能ボトルネックを解決するために、保存内計算が革新的な解決策として浮上しており...

炎症性筋疾患の細胞タイプマッピングが封入体筋炎における選択的筋線維脆弱性を強調する

炎性筋症における筋繊維タイプの異質性表現と封入体筋炎の選択的感受性 年齢とともに、炎性筋症の発症率が徐々に増加しており、その中でも封入体筋炎(IBM)は最も一般的なタイプであり、現在有効な治療法は存在しません。他の炎性筋症とは異なり、IBMは慢性的な経過をたどり、炎症と変性病理の特性を有します。さらに複雑なのは、IBMの進行を引き起こす要因と分子的な駆動要因が未だ明確でないことです。この疾患を深く研究するために、研究者たちは単核RNAシーケンシングと空間トランスクリプトミクスを用いて、患者の筋肉生検サンプルの細胞タイプ特異的な駆動要因のマッピングを行い、IBM筋肉と免疫介在性壊死性筋症(IMNM)および非炎症性の骨格筋サンプルを比較しました。 研究背景と目的 IBMは高齢者に最も多い炎性筋症...

k-emophone: 実験中の感情、ストレス、および注意ラベルを含むモバイルおよびウェアラブルデータセット

科学データレポート | K-emophone: 場所特定の感情、ストレス、注意力ラベルを含むモバイルおよびウェアラブルデータセット 背景紹介 低コストのモバイルおよびウェアラブルセンサーの普及に伴い、多くの研究がこれらのデバイスを利用して人間の精神的健康、生産性、行動パターンを追跡および分析しています。しかし、これまでのところ、実験室環境で収集されたデータセットは発展してきた一方で、実世界のシナリオで収集された感情、ストレス、注意力などのラベルを含むデータセットが不足しており、感情計算(Affective Computing)および人間とコンピュータのインタラクション(Human-computer Interaction)分野の研究進展を制限しています。 研究の出所 本研究は、Soowon ...