非対称光学暗号システムとコヒーレント重ね合わせおよび正規化分解に基づく秘密鍵共有

コヒーレントな重ね合わせと正規化分解に基づく非対称光学暗号システム 背景紹介 情報セキュリティの需要が増加する中、光学画像暗号化技術は過去30年間にわたって大きな注目を集めています。この技術は、光の振幅、位相、波長、偏光などの多様な自由度を利用して高速並列処理を実現し、画像暗号化に独自の利点を提供します。しかし、従来の光学暗号化手法にはいくつかの制限があります。例えば、「シルエット問題」(復号中に部分的な元の情報が漏洩する可能性がある)、複素値の暗号画像を保存する際の追加のストレージ要件、およびマルチイメージ暗号化(Multiple Image Encryption, MIE)におけるクロストークノイズの問題です。 これらの制約を克服するために、Mohamed G. Abdelfattahら...

イベントを用いた自己教師ありシャッター展開

イベントカメラに基づく自己教師ありシャッター展開法 研究背景と問題提起 コンピュータビジョン分野において、ローリングシャッター(Rolling Shutter, RS)画像から歪みのないグローバルシャッター(Global Shutter, GS)ビデオを復元することは、非常に挑戦的な課題です。RSカメラは行ごとに露光するため、動的なシーンでは空間的な歪み(例:ブレや傾き)が発生しやすく、特に高速運動のシーンで顕著になります。現在の手法は人工的な仮定や特定データセットの特性を利用してRS効果を修正できますが、これらの方法は複雑な非線形運動がある実世界のシーンでは性能が低下することが多いです。さらに、多くの手法は合成データセットに依存しており、これにより「合成から実世界」へのギャップが生じ、現実...

投資マイクロキャスティング3Dプリント多メタマテリアルによるプログラム可能な多モーダルバイオミメティックエレクトロニクス

鋳型マイクロキャスティング3Dプリントによるマルチマテリアルバイオミメティック電子デバイスの研究 学術的背景 バイオミメティック電子技術の急速な発展に伴い、人間の感覚機能を模倣する電子皮膚(Electronic Skin, E-skin)や柔軟なセンサーがロボット、医療機器、ヒューマンインターフェースなどの分野で広く応用される可能性を秘めています。しかし、既存のバイオミメティック電子デバイスは、材料選択、構造の複雑さ、機能集約化の面で多くの課題に直面しています。特に、材料性能を損なうことなく、多種多様な難成形材料の自由な組み立てと多機能集約化を実現することが、現在の研究におけるボトルネックとなっています。 伝統的な製造方法、例えばエレクトロスピニング、フォトリソグラフィー、転写印刷などは、材...

レジスティブメモリベースのゼロショット液体状態機械による多モーダルイベントデータ学習

新型抵抗変化メモリ駆動のゼロショット多モーダルイベント学習システム:ハードウェア-ソフトウェア協調設計の研究報告 学術的背景 人間の脳は複雑なスパイキングニューラルネットワーク(Spiking Neural Network, SNN)であり、極めて低い消費電力で多モーダル信号においてゼロショット学習(Zero-shot Learning)を行う能力を持っています。これは既存の知識を一般化して新しいタスクに対処する能力です。しかし、この能力をニューロモルフィックハードウェアに複製するには、ハードウェアとソフトウェアの両面で課題があります。ハードウェア面では、ムーアの法則の減速とフォン・ノイマンボトルネック(von Neumann bottleneck)が従来のデジタルコンピュータの効率を制限し...

エキスパート混合と3Dアナログインメモリコンピューティングを用いた大規模言語モデルの効率的なスケーリング

混合専門家と3Dアナログインメモリコンピューティングを用いた大規模言語モデルの効率的なスケーリング 学術的背景 近年、大規模言語モデル(Large Language Models, LLMs)は自然言語処理やテキスト生成などの分野で強力な能力を発揮しています。しかし、モデルの規模が拡大するにつれ、訓練や推論のコストも急激に上昇し、特にメモリ使用量、計算遅延、エネルギー消費の面で大きな課題となっています。これがLLMsの広範な応用を妨げる主要なボトルネックの一つとなっています。従来のノイマンアーキテクチャでは、大規模なパラメータを処理する際にデータがメモリと計算ユニットの間で頻繁に移動するため、「ノイマンボトルネック」が生じ、これらの課題がさらに深刻化しています。 この問題を解決するために、研...

深層再帰強化学習とフェデレーションラーニング補助を活用した産業用IoTトラフィック侵入検出手法

深層循環型強化学習と連合学習を用いた産業IoTトラフィックの侵入検知手法 学術背景 産業用IoT(Industrial Internet of Things, IIoT)の急速な発展は、スマート工場や産業システムに大きな変革をもたらしました。IIoTは、インターネットを介してさまざまな産業デバイスを接続し、データ交換、遠隔制御、インテリジェントな意思決定を実現しました。しかし、このシームレスな接続性と膨大なデバイスネットワークは、産業システムがより複雑で多様なサイバーセキュリティリスクに直面する結果となりました。現実のIIoTシナリオにおいて、ネットワーク攻撃はデータ漏洩、データ操作、サービス拒否(denial of service, DoS)、および工場の生産中断などの深刻な影響を引き起こ...

多層エンセンブルメンバーシップ推論攻撃

科学論文を深く掘り下げる:MEMIA: Multilevel Ensemble Membership Inference Attack 研究背景の紹介 デジタル技術の急速な発展に伴い、人工知能(AI)や機械学習(ML)は医療、金融、小売、教育、そしてソーシャルメディアなどのさまざまな分野に浸透しています。しかし、これらの技術の広範な利用により、プライバシー漏洩のリスクがますます顕著となっています。多くの研究では、機械学習モデルが対抗的攻撃に弱いことが示されており、その中でも重要なプライバシー攻撃の形式として、会員推論攻撃(Membership Inference Attack, MIA) が注目されています。この攻撃は、ターゲットモデルの出力分布を解析することで、特定のデータサンプルがモデル...

微細な手掛かりとノイズの不一致に基づく顔の偽造検出

精細な手がかりとノイズの不一致性に基づく顔偽造検出を深掘り 背景紹介 人工知能(AI)技術の急速な進展により、多様な生成モデルが驚くべき進歩を遂げています。これにより、高精度の「ディープフェイク(Deepfake)」顔画像を生成することがますます容易になりました。これらのリアルな顔偽造画像は、エンターテイメントや映画制作などの分野で合法的に利用されていますが、虚偽情報の拡散や世論の誘導、さらには社会安全や国家安全の脅威といった悪意のある目的にも使用されています。特に主流メディアが暗黙的な圧縮を採用する場合、圧縮プロセスが偽造の痕跡を希薄化し、検出をより困難にしています。そのため、効果的な顔偽造検出方法の開発はマルチメディア情報セキュリティ分野の中心的な課題となっています。 現在、既存の多くの...

SHAPベース誤差補正アプローチによる改善された説明可能な電力価格予測モデル

SHAPに基づく電力価格予測モデルの改良とその説明可能性の分析 背景と研究動機 電力市場における価格予測モデルは近年注目を集めており、市場の価格変動が関係者の財務に与える影響を考える上で重要です。特に、ヨーロッパのエネルギー市場では、エネルギー危機や地政学的要因の影響で、ここ数年燃料価格が急騰し、それに伴い電力市場の価格変動性が著しく増加しています。予測誤差がわずか1%でも、発電会社や需要応答事業者、取引会社などに大きな財務的影響を与える可能性があります。例えば、使用電力量が1GWに達する企業において、予測誤差が1%減少するだけでも、年間約1,200万ドルのコスト削減が可能となります。そのため、市場参加者にとって電力価格予測(Electricity Price Forecasting, EP...

FPGA上RNN加速用効率的CORDICベース活性化関数手法

RNNの効率的な活性化関数実現:CORDICアルゴリズムとFPGAハードウェア加速の革新 背景と研究の重要性 近年、ディープラーニング技術の急速な発展に伴い、特にリカレントニューラルネットワーク(Recurrent Neural Networks, RNNs)および長短期記憶ネットワーク(Long Short-Term Memory, LSTM)が、自然言語処理(Natural Language Processing, NLP)、音声認識、医療診断などの時間系列タスクにおいて強力な能力を発揮しています。しかし、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)と比較して、RNNモデルはその複雑性および非線形活性化関数の需要が多いため、計算...