モデルベース診断における重要な観察

このレポートでは、モデルベースの故障診断において、システムの異常の原因となる重要な観測データを特定する枠組みとアルゴリズムが紹介されています。この枠組みでは、元の観測データを「部分観測」に抽象化することで、診断結果に不可欠な観測を特定します。「重要な部分観測」とは、最大限に抽象化した後でも、元の観測と同じ最小診断集合を導出できる最小のものと定義されています。 この研究は、オーストラリア科学産業研究機構のデータ61センターのCody James Christopherと、フランス原子力・代替エネルギー庁のAlban Grastienの2人の著者によって行われ、2024年の人工知能ジャーナルに掲載されました。 研究者たちは最初に、モデルベース診断の基本的な枠組みと概念を説明しています。この枠組み...

グラフニューラルネットワークにおける分極メッセージパッシング

グラフニューラルネットワークにおける分極メッセージパッシング

グラフ構造データが様々な分野で広く応用されるにつれ、グラフデータを分析するための強力なツールであるグラフニューラルネットワーク(GNN)が注目されています。しかし、既存のGNNは、ノード表現を学習する際に、主に近傍ノードの類似性情報に依存しており、ノード間の差異性の潜在的可能性を無視しています。最近、新しい「極性メッセージ伝搬」(Polarized message-passing、PMP)パラダイムが登場し、GNNの設計に全く新しいアイデアを注入しました。 研究背景:従来のGNNは、ターゲットノードの表現を学習するために、近傍ノードの特徴を集約していますが、ノード間の類似性のみを考慮し、ノード差異に含まれる豊富な情報を十分に利用していませんでした。実際、現実世界のグラフデータには、「友人のパ...

ショウジョウバエの再帰的回路からのヒュー選択性

果蝇視覚系における色相選択性の回路メカニズム 色の知覚は視覚体験の重要な側面であり、生物個体と外界環境の相互作用において重要な役割を果たしています。ヒトなどの3種類の感光細胞型の霊長類動物では、視皮質に特定の色相(青、青緑、オレンジ色など)および非スペクトル色(紫やマゼンタなど)に選択的に反応する神経細胞が存在することが発見されています。しかし、この色相選択性応答の神経回路基盤は長らく明らかにされていませんでした。 最新号の『Nature Neuroscience』誌に掲載された研究では、コロンビア大学のRudy Behnia研究室が、遺伝的操作が容易なモデル生物であるショウジョウバエを利用して、その視覚系に色相選択性神経細胞が存在することを発見し、この色相選択性応答を生み出す神経回路メカニ...

スライステンソル成分分析による神経サブスペース以上の次元削減

背景紹介: 大規模ニューロン記録データは通常、ニューロン同時活性化パターンで記述することができます。しかし、ニューロン活動の変動を固定された低次元部分空間に制限するという観点では、固定されたニューロンシーケンスや緩やかに進化する潜在空間などのより高次元の構造が見落とされる可能性があります。本研究では、ニューロンデータにおけるタスク関連の可変性も、試行やタイミングの上で共変動し、異なる「共変性クラス」(covariability classes)を定義することができ、これらのクラスが同一データセットに同時に存在する可能性があると考えています。 研究動機: 従来の次元削減手法(主成分分析(PCA)など)は通常、単一の共変性クラスしかキャプチャできません。混在する複数の共変性クラスを区別するために...