サポートテンソルマシンの加速のための逐次安全静的および動的スクリーニングルール

在データ取得技術の絶え間ない発展によって、多様な特徴を含む大量の高次元データを取得することが非常に容易になっています。例えば、画像やビジュアルデータなどがそうです。しかし、従来の機械学習方法、特にベクトルや行列に基づく手法は、次元の災害、計算の複雑度の増加、およびモデルの過適合といった課題に直面しています。これらの問題を解決するために、テンソルという多次元配列の表現方法がベクトルや行列よりも柔軟性が高く、高次元データをうまく処理できるため、テンソルに基づく機械学習手法が学術研究の焦点となっています。 サポートテンソルマシン (Support Tensor Machine, STM) は効果的なテンソル分類手法であり、サポートベクトルマシン (Support Vector Machine, S...

メムリスタをベースとした適応型活性化関数を持つ異種ホップフィールドニューラルネットワークのダイナミクス

異種ホップフィールド神経ネットワークの研究:適応型活性化関数とメモリスタの結合による動的挙動解析 本研究は神経ネットワークにおける非線形要素がシステム動的挙動に与える影響を探討するものである。特に活性化関数とメモリスタ(memristor)が非線形要素として、カオスシステムの構築やシナプス行動の模擬に用いられることが多い。ホップフィールド神経ネットワーク(Hopfield Neural Network, HNN)は、その独特なネットワーク構造と複雑な脳様動態を生成する能力から、広範な注目を集めている。また、現在の研究は多くが固定活性化関数を使用した神経細胞のシステム動態への影響に集中しているが、異種の活性化関数組み合わせの研究は少ない。 本文は中華 王、春輝 梁、権利 鄧が執筆し、それぞれ湖...

低照度RGB-Tシーンにおける空間周波数手がかりによる顕著なオブジェクト検出

低照度RGB-Tシーンにおける空間周波数手がかりによる顕著なオブジェクト検出

空間-周波数手がかりの発掘方法による低照度RGB-Tシーンにおける顕著な目標検出 顕著な目標検出(Salient Object Detection, SOD)はコンピュータビジョンの分野で重要な位置を占めており、その主な任務は画像中で最も視覚的に魅力的な領域や物体を識別することです。この数十年で、SODモデルは正常な照明環境下である程度の進展を見せましたが、低光環境下では依然として厳しい課題に直面しています。低光環境下では、フォトンの不足により画像の詳細が欠落し、SODの性能が著しく影響を受けるためです。この課題は特に、インテリジェント監視や自動運転などの実際の応用において際立っています。 近年、RGB-T(可視光と熱赤外画像)システムは低光条件下で熱赤外の不変性という特性ゆえに、ますます多...

適応統合分解およびクロスモーダル注意融合に基づく電網障害診断フレームワーク

適応型統合分解とクロスモーダル注意融合に基づく電力網故障診断フレームワーク 研究背景 現代の電力システムの規模が拡大し複雑化する中で、電力網の安定運行はますます厳しい挑戦に直面しています。電力網の故障は自然災害、設備故障、局所的な電力網構造の脆弱性など複数の要因によって引き起こされる可能性があります。これらの故障は電力利用者の正常な業務に影響を与えるだけでなく、大規模な停電を引き起こし、重大な損失をもたらす可能性があります。米国エネルギー情報管理局のデータによれば、米国では年間平均500件以上の電力網故障が発生し、数百万の利用者に影響を与えています。中国では、電力網故障による年間平均電力損失は百億人民元を超えています。このように、迅速かつ正確に電力網故障の種類を検出し診断することは、電力シス...

間欠的なランダム摂動を持つ結合ニューラルネットワークの高速同期制御と暗号化-復号化のためのアプリケーション

結合されたニューラルネットワークにおける断続的ランダム摂動下での高速同期制御および暗号化・復号化の応用 一、背景および研究動機 近年、ニューラルネットワークはデータ分類、画像認識、組合せ最適化問題など様々な分野で広く応用されています。ニューラルネットワークの構造と性能に関して、決定論的ニューラルネットワークとランダム性ニューラルネットワークに分けることができます。多くの研究は、ノイズ摂動を加えたランダムニューラルネットワークが決定論的ニューラルネットワークよりも優れた動的特性を示すことを明らかにしています。これは、ランダム摂動を持つネットワークを構築することにより、実際のニューラルネットワークのモデルをよりリアルに模擬することができるためです。しかし、現在の多くのニューラルネットワークの研究...

事前訓練された言語モデルの抑制適応

InA: 事前学習言語モデルにおける抑制適応方法 事前学習言語モデル(Language Models, LMs)は自然言語処理(Natural Language Processing, NLP)タスクにおいて顕著な効果をあげている。しかし、従来のファインチューニング方法には冗長なパラメータの問題があり、効率と効果に影響を与えている。この挑戦に対応するために、本論文では抑制適応(Inhibition Adaptation, INA)と呼ばれるファインチューニング方法を提案し、追加される調整可能な重みを減らし、事前学習言語モデルからの知識を適切に再重み付けする。 研究の背景と問題 現在、事前学習言語モデルのファインチューニングはNLPの下流タスクを解決する一般的な方法である。しかし、古典的なファ...

異種の共存アトラクター、大規模振幅制御、および中心循環メムリスティブニューラルネットワークの有限時間同期

異質共存アトラクター、大規模振幅制御および中央サイクリックメムリスタ神経ネットワークの有限時間同期 学術的背景 メムリスタは、脳のシナプスに似た記憶性と非線形性などの物理特性のため、脳を模した神経ネットワークにおけるカオス動力学の研究において重要な理論的および実際的な意味を持っています。近年、ビッグデータと人工知能分野の発展に伴い、従来の固定神経ネットワークモデルは脳の構造と機能をマッピングする際の限界が徐々に明らかになっており、これは形態学的神経学研究のさらなる発展の主要な障壁となっています。2008年、HPラボが初めて物理的非線形メムリスタを開発して以来、メムリスタは人工神経ネットワーク分野で広く注目されるようになりました。メムリスタ神経ネットワーク(Memristive Neural ...

適応的に適切でない領域を特定および改善して正確なステレオマッチングを実現する

適応的に適切でない領域を特定および改善して正確なステレオマッチングを実現する

不良領域を適応的に識別および最適化して正確なステレオマッチングを実現 研究の背景と動機 コンピュータービジョン技術の急速な発展に伴い、ステレオマッチング技術はその高い精度、コスト効率、および非侵入性から、ロボティクス、宇宙、自動運転、産業製造など多くの分野で重要な役割を果たしています。しかし、オクルージョン領域やぼやけた領域を処理する際、ピクセル間の一致制約が信頼できなくなり、対応関係の探索が困難になります。そのため、畳み込みニューラルネットワーク(CNN)やトランスフォーマーベースの研究が急速に進展しているにもかかわらず、多くの方法が不良領域の処理において性能のボトルネックに直面しています。この課題に対処するため、研究チームはエラー領域特徴最適化メカニズムを導入して文脈特徴を提供し、不良領...

非独立同分布データを用いた多中心疾患診断のためのモデル投影による連合学習

非独立同分布データを用いた多中心疾患診断のためのモデル投影による連合学習

モデルプロジェクションを使用したフェデレーテッドラーニングによる多センター疾病診断 背景紹介 医療画像技術の急速な発展に伴い、自動化診断方法の研究は単一センターデータセットで良好な性能を示しています。しかし、これらの方法は実際の応用では他の医療機関のデータに一般化しにくいことが多いです。主な理由は、これらの方法が異なる医療センターのデータを独立同分布(IID)と仮定しているが、実際には異なるセンターが異なるスキャナーや画像パラメータを使用しているため、データ分布が非独立同分布(Non-IID)であることです。さらに、異なるセンターで診断される患者の数や種類にも大きな差があります。したがって、多センターのデータは異質性を持ち、集中化学習(Centralized Learning)では効果的に解...

制約付き非ゼロ和ゲームのための適応サンプリング人工-実際制御

制約システムの非ゼロ和ゲームにおける適応サンプリング人工・実際制御の応用 背景 現代の工業および研究分野におけるスマート技術と制御システムの急速な発展により、従来の制御方法がシステムの安定性を保証し、エネルギー消費を最小化するという厳しい要求を満たすことが困難になっています。実際のシステムは通常非常に複雑で、少なくとも2つの制御ユニットを含んでおり、コンポーネント間には複雑な競争と協力の関係があります。このような状況では、設計された制御スキームは単一のコントローラーの利益最大化だけでなく、全体の最適化も実現する必要があります。このような問題は通常、非ゼロ和ゲーム(Non-Zero-Sum Games,NZSG)とみなされ、多物理入力の制約条件下でシステムのカップリングダイナミクスを処理するこ...