複雑なシステムのシミュレーションの精度の高い代替モデルの効率的な学習
この研究では、複雑なシステムを正確にシミュレートできる代理モデルを効率的に構築するためのオンライン学習手法が提案されています。この手法には、以下の3つの主要な構成要素があります。 新しい訓練およびテストデータを生成するためのサンプリング戦略 訓練データから候補の代理モデルを生成するための学習戦略 テストデータ上での候補の代理モデルの有効性を評価するための検証指標 この論文では、著者はRadial Basis Function(RBF)補間を代理モデルの応答面として使用しています。このオンライン手法は、代理モデルが応答面のすべてのローカル極値点(端点を含む)を含むことを保証することを目的としており、代理モデルのパフォーマンスが有効性の閾値を下回る場合に再訓練する連続的な検証と更新のメカニズムを...